skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.

Abstract

The Gray Cancer Institute has pioneered the use of X ray focussing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognised as a highly versatile technique for understanding how ionising radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ‘bystander effect’ where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbours. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ‘tabletop’ X-ray microprobe was optimised for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) andmore » notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focussed electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 metre optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a custom built microscope is used to image the focussed beam on the target, through a vacuum window. The X-rays are focussed by a zone plate optical assembly mounted to the end of a hollow vertical tube that can be precisely positioned above the X ray source. The cell finding and positioning stage comprises an epi-fluorescence microscope and a feedback controlled 3 axis cell positioning stage, also mounted on the optical table. Independent vertical micro positioning of the microscope objective turret allows the focus of the microscope and the X ray focus to coincide in space (i.e. at the point where the cell should be positioned for exposure). The whole microscope stage assembly can be precisely raised or lowered, to cater for large differences in the focal length of the X ray zone plates. The facility is controlled by PC and the software provides full status and control of the source and makes use of a dual-screen for control and display during the automated cell finding and irradiation procedures.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex, HA62JR, UK
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
897804
Report Number(s):
DOE/ER/63236-1
TRN: US0703293
DOE Contract Number:
FG02-01ER63236
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; ELECTRON BEAMS; FOCUSING; IN VITRO; IONIZING RADIATIONS; IRRADIATION PROCEDURES; POSITIONING; RADIATIONS; microprobe; bystander; X-ray; low-dose

Citation Formats

Folkard, Melvyn, Vojnovic, Borivoj, Schettino, Giuseppe, Atkinson, Kirk, Prise, Kevin, M., and Michael, Barry, D. A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.. United States: N. p., 2007. Web. doi:10.2172/897804.
Folkard, Melvyn, Vojnovic, Borivoj, Schettino, Giuseppe, Atkinson, Kirk, Prise, Kevin, M., & Michael, Barry, D. A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.. United States. doi:10.2172/897804.
Folkard, Melvyn, Vojnovic, Borivoj, Schettino, Giuseppe, Atkinson, Kirk, Prise, Kevin, M., and Michael, Barry, D. Tue . "A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.". United States. doi:10.2172/897804. https://www.osti.gov/servlets/purl/897804.
@article{osti_897804,
title = {A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.},
author = {Folkard, Melvyn and Vojnovic, Borivoj and Schettino, Giuseppe and Atkinson, Kirk and Prise, Kevin, M. and Michael, Barry, D.},
abstractNote = {The Gray Cancer Institute has pioneered the use of X ray focussing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognised as a highly versatile technique for understanding how ionising radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ‘bystander effect’ where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbours. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ‘tabletop’ X-ray microprobe was optimised for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) and notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focussed electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 metre optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a custom built microscope is used to image the focussed beam on the target, through a vacuum window. The X-rays are focussed by a zone plate optical assembly mounted to the end of a hollow vertical tube that can be precisely positioned above the X ray source. The cell finding and positioning stage comprises an epi-fluorescence microscope and a feedback controlled 3 axis cell positioning stage, also mounted on the optical table. Independent vertical micro positioning of the microscope objective turret allows the focus of the microscope and the X ray focus to coincide in space (i.e. at the point where the cell should be positioned for exposure). The whole microscope stage assembly can be precisely raised or lowered, to cater for large differences in the focal length of the X ray zone plates. The facility is controlled by PC and the software provides full status and control of the source and makes use of a dual-screen for control and display during the automated cell finding and irradiation procedures.},
doi = {10.2172/897804},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 23 00:00:00 EST 2007},
month = {Tue Jan 23 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • No abstract prepared.
  • Thermal and residual stresses in films exposed to sudden temperature changes are analyzed based on an elastoplastic-brittle idealization of film response. The results thus obtained are used to explain qualitatively the damage mechanisms of various failure modes observed III Si-Ge film deposited on a single crystal Si substrate exposed to soft x-ray radiation for a short duration of time.
  • Generations of students in radiation biology have been taught that heritable biological damage requires direct damage to DNA. We now know that this is not true. The Bystander Effect is the name given to the phenomenon whereby biological effects are observed in cells that are not themselves traversed by a charged particle, but are in close proximity to cells that are. Several research groups have convincingly demonstrated a bystander effect for alpha particle, which are heavy and high LET, because charged particles can be focused into a tiny beam that can be directed onto individual cells. The biological effects seenmore » in adjacent non-hit cells clearly represents a bystander effect. It is not so easy to demonstrate a similar effect for x-rays or for the electrons set in motion by the absorption of x-rays. In this project we used two types of cell that could be recognized one from the other. One cell type was fed radioactive tritiated thymidine, which is incorporated into the DNA, . The tritium emits electrons which have a very short range so that they do not even get out of the cell. These cells were then mixed with a different type of cell which are routinely used to assess mutations. The mixed cells formed a cluster, where the two types of cells were in close contact, and left for some hours. Subsequently, the two types of cells were separated and studied. A substantial fraction of the cells that had incorporated the tritiated thymidine were killed by the radiation. The interesting finding is that the cells that had not incorporated tritiated thymidine, but had been in close contact with cells that had, exhibited a significant incidence of mutations. These experiments clearly demonstrated a bystander effect for low LET electrons. In further experiments, it was possible to show that the bystander effect was greatest when the two cell types were in gap junction communication.« less
  • The management of the risks of exposure of people to ionizing radiation is important in relation to its uses in industry and medicine, also to natural and man-made radiation in the environment. The vase majority of exposures are at a very low level of radiation dose. The risks are of inducing cancer in the exposed individuals and a smaller risk of inducing genetic damage that can be transmitted to children conceived after exposure. Studies of these risks in exposed population studies with any accuracy above the normal levels of cancer and genetic defects unless the dose levels are high. Inmore » practice, this means that our knowledge depends very largely on the information gained from the follow-up of the survivors of the atomic bombs dropped on Japanese cities. The risks calculated from these high-dose short-duration exposures then have to be projected down to the low-dose long-term exposures that apply generally. Recent research using cells in culture has revealed that the relations hi between high- and low-dose biological damage may be much more complex than had previously been thought. The aims of this and other projects in the DOE's Low-Dose Program are to gain an understanding of the biological actions of low-dose radiation, ultimately to provide information that will lead to more accurate quantification of low-dose risk. Our project is based on the concept that the processes by which radiation induces cancer start where the individual tracks of radiation impact on cells and tissues. At the dose levels of most low-dose exposures, these events are rare and any individual cells only ''sees'' radiation tracks at intervals averaging from weeks to years apart. This contracts with the atomic bomb exposures where, on average, each cell was hit by hundreds of tracks instantaneously. We have therefore developed microbeam techniques that enable us to target cells in culture with any number of tracks, from one upwards. This approach enables us to study the biological basis of the relationship between high- and low-dose exposures. The targeting approach also allows us to study very clearly a newly recognized effect of radiation, the ''bystander effect'', which appears to dominate some low-dose responses and therefore may have a significant role in low-dose risk mechanisms. Our project also addresses the concept that the background of naturally occurring oxidative damage that takes place continually in cells due to byproducts of metabolism may play a role in treatments that modify the levels of oxidative damage, either alone or in combination with low-dose irradiation. In this project, we have used human and rodent cell lines and each set of experiments has been carried out on a single cell type. However, low-dose research has to extend into tissues because signaling between cells of different types is likely to influence the responses. Our studies have therefore also included microbeam experiments using a model tissue system that consists of an explant of a small piece of pig ureter grown in culture. The structure of this tissue is similar to that of epithelium and there it relates to the tissues in which carcinoma arises. Our studies have been able to measure bystander-induced changes in the cells growing out from the tissue fragment after it has been targeted with a few radiation tracks to mimic a low-dose exposure.« less