skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations

Abstract

We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation.We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich.We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
897605
Report Number(s):
FERMILAB-PUB-06-452-CD
arXiv eprint number astro-ph/0604539; TRN: US200706%%432
DOE Contract Number:
AC02-07CH11359
Resource Type:
Journal Article
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ASYMMETRY; GALAXIES; LUMINOSITY; MULTIPLICITY; Astrophysics

Citation Formats

Einasto, Jaan, Einasto, M., Saar, E., Tago, E., Liivamagi, L.J., Joeveer, M.J, Suhhonenko, I., Hutsi, G., /Tartu Observ., Jaaniste, J., /Estonian U., Heinamaki, P., /Tuorla Observ., Muller, V., Knebe, A., /Potsdam, Astrophys. Inst., Tucker, D., and /Fermilab. Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations. United States: N. p., 2006. Web.
Einasto, Jaan, Einasto, M., Saar, E., Tago, E., Liivamagi, L.J., Joeveer, M.J, Suhhonenko, I., Hutsi, G., /Tartu Observ., Jaaniste, J., /Estonian U., Heinamaki, P., /Tuorla Observ., Muller, V., Knebe, A., /Potsdam, Astrophys. Inst., Tucker, D., & /Fermilab. Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations. United States.
Einasto, Jaan, Einasto, M., Saar, E., Tago, E., Liivamagi, L.J., Joeveer, M.J, Suhhonenko, I., Hutsi, G., /Tartu Observ., Jaaniste, J., /Estonian U., Heinamaki, P., /Tuorla Observ., Muller, V., Knebe, A., /Potsdam, Astrophys. Inst., Tucker, D., and /Fermilab. Sat . "Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations". United States. doi:. https://www.osti.gov/servlets/purl/897605.
@article{osti_897605,
title = {Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations},
author = {Einasto, Jaan and Einasto, M. and Saar, E. and Tago, E. and Liivamagi, L.J. and Joeveer, M.J and Suhhonenko, I. and Hutsi, G. and /Tartu Observ. and Jaaniste, J. and /Estonian U. and Heinamaki, P. and /Tuorla Observ. and Muller, V. and Knebe, A. and /Potsdam, Astrophys. Inst. and Tucker, D. and /Fermilab},
abstractNote = {We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation.We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich.We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EST 2006},
month = {Sat Apr 01 00:00:00 EST 2006}
}
  • We use the 2dF Galaxy Redshift Survey data to compile catalogues of superclusters for the Northern and Southern regions of the 2dFGRS, altogether 543 superclusters at redshifts 0.009 {le} z {le} 0.2. We analyze methods of compiling supercluster catalogues and use results of the Millennium Simulation to investigate possible selection effects and errors. We find that the most effective method is the density field method using smoothing with an Epanechnikov kernel of radius 8 h{sup -1} Mpc. We derive positions of the highest luminosity density peaks and find the most luminous cluster in the vicinity of the peak, this clustermore » is considered as the main cluster and its brightest galaxy the main galaxy of the supercluster. In catalogues we give equatorial coordinates and distances of superclusters as determined by positions of their main clusters. We also calculate the expected total luminosities of the superclusters.« less
  • We use catalogues of superclusters of galaxies from the 2dF Galaxy Redshift Survey to study the properties of galaxies in superclusters. We compare the properties of galaxies in high and low density regions of rich superclusters, in poor superclusters and in the field, as well as in groups, and of isolated galaxies in superclusters of various richness. We show that in rich superclusters the values of the luminosity density smoothed on a scale of 8 h{sup -1} Mpc are higher than in poor superclusters: the median density in rich superclusters is {sigma} {approx} 7.5, in poor superclusters {delta} {approx} 6.0.more » Rich superclusters contain high density cores with densities {sigma} > 10 while in poor superclusters such high density cores are absent. The properties of galaxies in rich and poor superclusters and in the field are different: the fraction of early type, passive galaxies in rich superclusters is slightly larger than in poor superclusters, and is the smallest among the field galaxies. Most importantly, in high density cores of rich superclusters ({delta} > 10) there is an excess of early type, passive galaxies in groups and clusters, as well as among those which do not belong to groups or clusters. The main galaxies of superclusters have a rather limited range of absolute magnitudes. The main galaxies of rich superclusters have larger luminosities than those of poor superclusters and of groups in the field (the median values are correspondingly M{sub bj} = -21.02, M{sub bj} = -20.9 and M{sub bj} = -19.7 for rich and poor superclusters and groups in the field). Our results show that both the local (group/cluster) environments and global (supercluster) environments influence galaxy morphologies and their star formation activity.« less
  • We have tested for physical association of candidate companion quasars with putative parent galaxies by virtue of Karlsson periodicity in quasar redshifts. We examined galaxies from the 2dF Galaxy Redshift Survey (2dFGRS) and quasars from the 2dF Quasar Redshift Survey (2QZ) in the two declination strips (at declinations 0 Degree-Sign and -30 Degree-Sign ) covered by the 2QZ, first filtering out galaxies and quasars using the respective survey masks and observation qualities as described, and using only quasars with z {>=} 0.5 to avoid the redshift region of mixed galaxies and quasars. Around each galaxy, quasars are detected as physicallymore » associated with a putative parent galaxy if their respective redshifts conform to empirically derived constraints based on an ejection hypothesis. We ran Monte Carlo control trials against the pure physical associations by replacing the actual redshifts of the candidate companion quasars with quasar redshifts drawn randomly from each respective right ascension hour. The constraints are grouping of quasar redshifts and Karlsson periodicity of quasar redshifts.« less
  • We construct a sample of low-redshift Lyalpha emission-line selected sources from Galaxy Evolution Explorer (GALEX) grism spectroscopy of nine deep fields to study the role of Lyalpha emission in galaxy populations with cosmic time. Our final sample consists of 119 (141) sources selected in the redshift interval z = 0.195-0.44 (z = 0.65-1.25) from the FUV (NUV) channel. We classify the Lyalpha sources as active galactic nuclei (AGNs) if high-ionization emission lines are present in their UV spectra and as possible star-forming galaxies otherwise. We classify additional sources as AGNs using line widths for our Lyalpha emitter (LAE) analysis. Thesemore » classifications are broadly supported by comparisons with X-ray and optical spectroscopic observations, though the optical spectroscopy identifies a small number of additional AGNs. Defining the GALEX LAE sample in the same way as high-redshift LAE samples, we show that LAEs constitute only about 5% of NUV-continuum selected galaxies at z {approx} 0.3. We also show that they are less common at z {approx} 0.3 than they are at z {approx} 3. We find that the z {approx} 0.3 optically confirmed Lyalpha galaxies lie below the metallicity-luminosity relation of the z {approx} 0.3 NUV-continuum selected galaxies but have similar Halpha velocity widths at similar luminosities, suggesting that they also lie below the metallicity-mass relation of the NUV-continuum selected galaxies. We show that, on average, the Lyalpha galaxies have bluer colors, lower extinctions as measured from the Balmer line ratios, and more compact morphologies than the NUV-continuum selected galaxies. Finally, we confirm that the z {approx} 2 Lyman break galaxies have relatively low metallicities for their luminosities, and we find that they lie in the same metallicity range as the z {approx} 0.3 Lyalpha galaxies.« less
  • Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z {approx} 8 candidates as Y{sub 098}-dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y{sub 098}-dropouts to fainter luminosities (M{sub *} galaxies with M{sub AB} {approx} -20), with detections at {>=}5{sigma} confidence (compared to the 8{sigma} confidence threshold adoptedmore » earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y{sub 098}-dropouts at {>=}99.84% confidence. Field BoRG58, which contains the best bright z {approx} 8 candidate (M{sub AB} = -21.3), has the most significant overdensity of faint Y{sub 098}-dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z {approx} 8 candidate. The overdensity of Y{sub 098}-dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y{sub 098}-dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass M{sub h} Almost-Equal-To (4-7) Multiplication-Sign 10{sup 11} M{sub Sun} ({approx}5{sigma} density peak) and is surrounded by several M{sub h} Almost-Equal-To 10{sup 11} M{sub Sun} halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a M{sub h} > 2 Multiplication-Sign 10{sup 14} M{sub Sun} galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z {approx} 8 nature of the overdensity, discover new members, and measure their precise redshift.« less