skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Single Molecule Screening of Disease DNA Without Amplification

Abstract

The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersionmore » distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA was probed with fluorescently-labeled probe molecules and imaged. When only the probes were stained and hybridized in a vial, it had 6 orders of magnitude dynamic range with a detection limit of ~0.7 copy/cell. A second dye was added to lower the false positive levels. Although there was a sacrifice of two orders of magnitude in detection limit, the number of false positives was reduced to zero. HPV-16 DNA was also hybridized and detected on surface-tethered probes. When the entire human genomic DNA and HPV was labeled and hybridized, the detection limit was similar to that of one-color assay detected in capillary. However, non-specific adsorption was high, and the dynamic range was narrow because of saturation of the surface and electrostatic repulsion between hybridized targets on the surface. The second probe was introduced to lower non-specific adsorption, and the strategy succeeded in 4 orders of magnitude linear dynamic range in a log-log plot, along with 2.4 copies/cell detection limit. DNA extracts of cell lines that contained a known copy number of HPV-16 DNA were tested with the four strategies described above. The calculated numbers from observed molecule counts matched the known values. Results from the Pap test sample with added HPV DNA were similar to those of purified DNA, suggesting our method is compatible with the conventional Pap test sample collection method. Further optimization will be needed before this single molecule level detection and identification can actually be used in a real clinical lab, but it has good potential and applicability. Improvement such as automated imaging and scanning, more accurate data processing software as well as sensitive camera, should help increase the efficiency and throughput.« less

Authors:
 [1]
  1. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
897373
Report Number(s):
IS-T 2092
TRN: US200705%%58
DOE Contract Number:
AC02-07CH11358
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; AMPLIFICATION; DATA PROCESSING; DISEASES; DNA; ELECTROSTATICS; ENERGY TRANSFER; FLUORESCENCE; HYBRIDIZATION; OPTIMIZATION; PATHOGENS; RESONANCE; UNINTERRUPTIBLE POWER SUPPLIES

Citation Formats

Lee, Ji-Young. Single Molecule Screening of Disease DNA Without Amplification. United States: N. p., 2006. Web. doi:10.2172/897373.
Lee, Ji-Young. Single Molecule Screening of Disease DNA Without Amplification. United States. doi:10.2172/897373.
Lee, Ji-Young. Sun . "Single Molecule Screening of Disease DNA Without Amplification". United States. doi:10.2172/897373. https://www.osti.gov/servlets/purl/897373.
@article{osti_897373,
title = {Single Molecule Screening of Disease DNA Without Amplification},
author = {Lee, Ji-Young},
abstractNote = {The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA was probed with fluorescently-labeled probe molecules and imaged. When only the probes were stained and hybridized in a vial, it had 6 orders of magnitude dynamic range with a detection limit of ~0.7 copy/cell. A second dye was added to lower the false positive levels. Although there was a sacrifice of two orders of magnitude in detection limit, the number of false positives was reduced to zero. HPV-16 DNA was also hybridized and detected on surface-tethered probes. When the entire human genomic DNA and HPV was labeled and hybridized, the detection limit was similar to that of one-color assay detected in capillary. However, non-specific adsorption was high, and the dynamic range was narrow because of saturation of the surface and electrostatic repulsion between hybridized targets on the surface. The second probe was introduced to lower non-specific adsorption, and the strategy succeeded in 4 orders of magnitude linear dynamic range in a log-log plot, along with 2.4 copies/cell detection limit. DNA extracts of cell lines that contained a known copy number of HPV-16 DNA were tested with the four strategies described above. The calculated numbers from observed molecule counts matched the known values. Results from the Pap test sample with added HPV DNA were similar to those of purified DNA, suggesting our method is compatible with the conventional Pap test sample collection method. Further optimization will be needed before this single molecule level detection and identification can actually be used in a real clinical lab, but it has good potential and applicability. Improvement such as automated imaging and scanning, more accurate data processing software as well as sensitive camera, should help increase the efficiency and throughput.},
doi = {10.2172/897373},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share:
  • Various single-molecule techniques were utilized for ultra-sensitive early diagnosis of viral DNA and antigen and basic mechanism study of enzymatic reactions. DNA of human papilloma virus (HPV) served as the screening target in a flow system. Alexa Fluor 532 (AF532) labeled single-stranded DNA probes were hybridized to the target HPV-16 DNA in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell andmore » had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, fluorescence resonance energy transfer (FRET) was employed to achieve zero false-positive count. We also showed that DNA extracts from Pap test specimens did not interfere with the system. A surface-based method was used to improve the throughput of the flow system. HPV-16 DNA was hybridized to probes on a glass surface and detected with a total internal reflection fluorescence (TIRF) microscope. In the single-probe mode, the whole genome and target DNA were fluorescently labeled before hybridization, and the detection limit is similar to the flow system. In the dual-probe mode, a second probe was introduced. The linear dynamic range covers 1.44-7000 copies/cell, which is typical of early infection to near-cancer stages. The dual-probe method was tested with a crudely prepared sample. Even with reduced hybridization efficiency caused by the interference of cellular materials, we were still able to differentiate infected cells from healthy cells. Detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1(HIV-1) was chosen to be the target in this study. The target was sandwiched between a monoclonal capture antibody and a polyclonal detector antibody. The capture antibody was covalently immobilized on modified glass slides. The detector antibody was conjugated with AF532 labeled secondary antibody prior to being used as probe for the antigen. Imaging was performed with a TIRF system. This technique is demonstrated for detecting HIV-1 p24 antigen down to 0.1 pg/mL with a dynamic range of over 4 orders of magnitude. A Langmuir isotherm fit the molecule count dependence on the target concentration. The results also showed that neither sensitivity nor dynamic range was affected by the biological matrix. SMISA is therefore a promising approach for the early diagnosis of virus-induced diseases. Single-molecule enzymatic kinetics and enantioselectivity were monitored in real time by using TIRF microscopy. AF532 labeled poly-L-lysine (PLL) or poly-D-lysine (PDL) was covalently immobilized on a dithiobis (succinimidyl undecanoate) self-assembled monolayer (DSU SAM). Chain shortening due to enzymatic hydrolysis resulted in the reduction of the individual fluorescence intensities. A broad distribution was obtained when 100 single-molecule half-lives were analyzed. However, the detailed hydrolysis process involved also a long-lived component and an induction period that varied significantly among molecules. Charge and steric heterogeneity at the surface are responsible for these features.« less
  • Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic samplemore » tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an attractive alternative to current methods for genetic analysis and disease diagnosis.« less
  • A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT)more » indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period.« less
  • Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitablymore » designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.« less
  • Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less