skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Studies of multi-heme cytochromes from Geobacter sulfurreducens

Abstract

The Geobacteraceae family predominates in the reduction of uranium in subsurface environments. We are focusing on the model organism, Geobacter sulfurreducens; its genome contains a large number (>100) of cytochromes c that function in metal reduction pathways. Intensive functional genomics and physiological studies are in progress in Prof. Derek Lovley's laboratory, and the complete genome sequence of this organism has been determined by Methe et al. 2003. We are studying cytochromes from the c{sub 7} family that are required for the reduction of Fe(III). Previously, we expressed in E. coli (Londer et al., 2002) and determined the three-dimensional structure at 1.45 {angstrom} resolution (Pokkuluri et al., 2004a) of the three-heme cytochrome c{sub 7} (PpcA, coded by ORF01023) characterized by Lloyd et al., 2003. Further we identified in the G. sulfurreducens genome ORFs for several of its homologs (Pokkuluri et al., 2004a). Four of the ORFs are the same size as PpcA; three other ORFs are polymers of c7-type domains, two of which consist of four domains and one of nine domains, that contain 12 and 27 hemes respectively.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Biosciences Division, Argonne National Laboratory, Argonne, IL 60439
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
894934
Report Number(s):
CONF-ERSP2006-65
TRN: US200702%%463
DOE Contract Number:
W-31-109-Eng-38
Resource Type:
Conference
Resource Relation:
Conference: Annual Environmental Remediation Sciences Program PI Meeting, April 3-5, 2006, Warrenton, VA
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 59 BASIC BIOLOGICAL SCIENCES; CYTOCHROMES; FOCUSING; FUNCTIONALS; POLYMERS; RESOLUTION; URANIUM

Citation Formats

Pokkuluri, P. Raj, Londer, Yuri, Y., Orshonsky, Valerie, Orshonsky, Lisa, Duke, Norma, and Schiffer, Marianne. Studies of multi-heme cytochromes from Geobacter sulfurreducens. United States: N. p., 2006. Web.
Pokkuluri, P. Raj, Londer, Yuri, Y., Orshonsky, Valerie, Orshonsky, Lisa, Duke, Norma, & Schiffer, Marianne. Studies of multi-heme cytochromes from Geobacter sulfurreducens. United States.
Pokkuluri, P. Raj, Londer, Yuri, Y., Orshonsky, Valerie, Orshonsky, Lisa, Duke, Norma, and Schiffer, Marianne. Wed . "Studies of multi-heme cytochromes from Geobacter sulfurreducens". United States. doi:. https://www.osti.gov/servlets/purl/894934.
@article{osti_894934,
title = {Studies of multi-heme cytochromes from Geobacter sulfurreducens},
author = {Pokkuluri, P. Raj and Londer, Yuri, Y. and Orshonsky, Valerie and Orshonsky, Lisa and Duke, Norma and Schiffer, Marianne},
abstractNote = {The Geobacteraceae family predominates in the reduction of uranium in subsurface environments. We are focusing on the model organism, Geobacter sulfurreducens; its genome contains a large number (>100) of cytochromes c that function in metal reduction pathways. Intensive functional genomics and physiological studies are in progress in Prof. Derek Lovley's laboratory, and the complete genome sequence of this organism has been determined by Methe et al. 2003. We are studying cytochromes from the c{sub 7} family that are required for the reduction of Fe(III). Previously, we expressed in E. coli (Londer et al., 2002) and determined the three-dimensional structure at 1.45 {angstrom} resolution (Pokkuluri et al., 2004a) of the three-heme cytochrome c{sub 7} (PpcA, coded by ORF01023) characterized by Lloyd et al., 2003. Further we identified in the G. sulfurreducens genome ORFs for several of its homologs (Pokkuluri et al., 2004a). Four of the ORFs are the same size as PpcA; three other ORFs are polymers of c7-type domains, two of which consist of four domains and one of nine domains, that contain 12 and 27 hemes respectively.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Apr 05 00:00:00 EDT 2006},
month = {Wed Apr 05 00:00:00 EDT 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Geobacteraceae family predominates in the reduction of uranium in subsurface environments. We are focusing on the model organism, Geobacter sulfurreducens; its genome contains a large number (>100) of cytochromes c that function in metal reduction pathways. Intensive functional genomics and physiological studies are in progress in Prof. Derek Lovley's laboratory, and the complete genome sequence of this organism has been determined by Methe et al. 2003. We are studying cytochromes from the c{sub 7} family that are required for the reduction of Fe(III). Previously, we expressed in E. coli (Londer et al., 2002) and determined the three-dimensional structure atmore » 1.45 {angstrom} resolution (Pokkuluri et al., 2004a) of the three-heme cytochrome c{sub 7} (PpcA, coded by ORF01023) characterized by Lloyd et al., 2003. Further we identified in the G. sulfurreducens genome ORFs for several of its homologs (Pokkuluri et al., 2004a). Four of the ORFs are the same size as PpcA; three other ORFs are polymers of c{sub 7}-type domains, two of which consist of four domains and one of nine domains, that contain 12 and 27 hemes respectively.« less
  • PpcA, a tri-heme cytochrome c7 from Geobacter sulfurreducens was investigated as a model for photosensitizer-initiated electron transfer within a multi-heme "molecular wire" protein architecture. E. coli expression of PpcA was found to be tolerant of cysteine site-directed mutagenesis, demonstrated by the successful expression of natively folded proteins bearing cysteine mutations at a series of sites selected to vary characteristically with respect to the three -CXXCH- heme binding domains. A preliminary survey of 5 selected mutants found that the introduced cysteines can be readily covalently linked to a Ru(II)-(2,2'-bpy)2(4-bromomethyl-4’-methyl-2,2'-bpy) photosensitizer (where bpy = bipyridine), and that the linked constructs support bothmore » photo-oxidative and photo-reductive quenching of the photosensitizer excited-state, depending upon the initial heme redox state. For photo-oxidative electron transfer, apparent heme reduction risetimes were found to vary from 7 x 10-12 s to 5 x 10-8 s, depending upon the site of photosensitizer linking. The excited-state electron transfers are about 103-fold faster than any previously reported photosensitizer-redox protein covalently linked construct. Preliminary conformational analysis using molecular dynamics simulations shows that rates for electron transfer track both the distance and pathways for electron transfer. Two mutants with the fastest charge transfer rates, A23C and K29C, showed a significant role of specific paths for electron transfer. While K29C labeled mutant was expected to have approximately 0.8Å greater donor-acceptor distance, it showed 20-fold faster charge separation rate. Clear evidence for inter-heme electron transfer within the multi-heme protein is not detected within the lifetimes of the charge separated states. These results demonstrate an opportunity to develop multi-heme c-cytochromes for investigation of electron transfer in protein "molecular wires" and to serve as frameworks for metalloprotein designs that support multiple electron transfer redox chemistry.« less
  • A family of triheme cytochromes from Geobacter sulfurreducens plays an important role in extracellular electron transfer. In addition to their role in electron transfer pathways, two members of this family (PpcA and PpcD) were also found to be able to couple e(-)/H+ transfer through the redox Bohr effect observed in the physiological pH range, a feature not observed for cytochromes PpcB and PpcE. In attempting to understand the molecular control of the redox Bohr effect in this family of cytochromes, which is highly homologous both in amino acid sequence and structures, it was observed that residue 6 is a conservedmore » leucine in PpcA and PpcD, whereas in the other two characterized members (PpcB and PpcE) the equivalent residue is a phenylalanine. To determine the role of this residue located close to the redox Bohr center, we replaced Leu(6) in PpcA with Phe and determined the redox properties of the mutant, as well as its solution structure in the fully reduced state. In contrast with the native form, the mutant PpcAL6F is not able to couple the e(-)/H+ pathway. We carried out the reverse mutation in PpcB and PpcE (i.e., replacing Phe(6) in these two proteins by leucine) and the mutated proteins showed an increased redox Bohr effect. The results clearly establish the role of residue 6 in the control of the redox Bohr effect in this family of cytochromes, a feature that could enable the rational design of G. sulfurreducens strains that carry mutant cytochromes with an optimal redox Bohr effect that would be suitable for various biotechnological applications.« less
  • Periplasmic sensor domains from two methyl-accepting chemotaxis proteins from Geobacter sulfurreducens (encoded by genes GSU0935 and GSU0582) were expressed in Escherichia coli. The sensor domains were isolated, purified, characterized in solution, and their crystal structures were determined. In the crystal, both sensor domains form swapped dimers and show a PAS-type fold. The swapped segment consists of two helices of about 45 residues at the N terminus with the hemes located between the two monomers. In the case of the GSU0582 sensor, the dimer contains a crystallographic 2-fold symmetry and the heme is coordinated by an axial His and a watermore » molecule. In the case of the GSU0935 sensor, the crystals contain a non-crystallographic dimer, and surprisingly, the coordination of the heme in each monomer is different; monomer A heme has His-Met ligation and monomer B heme has His-water ligation as found in the GSU0582 sensor. The structures of these sensor domains are the first structures of PAS domains containing covalently bound heme. Optical absorption, electron paramagnetic resonance and NMR spectroscopy have revealed that the heme groups of both sensor domains are high-spin and low-spin in the oxidized and reduced forms, respectively, and that the spin-state interconversion involves a heme axial ligand replacement. Both sensor domains bind NO in their ferric and ferrous forms but bind CO only in the reduced form. The binding of both NO and CO occurs via an axial ligand exchange process, and is fully reversible. The reduction potentials of the sensor domains differ by 95 mV (-156 mV and -251 mV for sensors GSU0582 and GSU0935, respectively). The swapped dimerization of these sensor domains and redox-linked ligand switch might be related to the mechanism of signal transduction by these chemotaxis proteins.« less