skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Localized Corrosion Susceptibility Of Alloy 22 In Na-K-Cl_NO3 Brines At 110 To 150?C

Abstract

Electrochemical cyclic potentiodynamic polarization experiments were conducted to assess crevice corrosion of Alloy 22 in de-aerated aqueous solutions of chloride and nitrate salts of potassium and sodium in the temperature range 110-150 C. The tests were run in neutral and slightly acidic aqueous solutions. The Alloy 22 specimens were multiple creviced weld prisms. No evidence of crevice corrosion was observed in the range 125-150 C. In the 120 to 160 C temperature range, the anionic concentration of stable aqueous solutions is dominated by nitrate relative to chloride. At nominally 120 C, the minimum nitrate to chloride ratio is about 4.5, and it increases to about 22 at nominally 155 C. The absence of localized corrosion susceptibility in these solutions is attributed to the known inhibiting effect of the nitrate anion. Aqueous solution chemistry studies indicate that nitrate to chloride ratios of less than 0.5 are possible for temperatures up to nominally 116 C. At 110 C, aqueous solutions can have dissolved chloride well in excess of nitrate. Localized corrosion was observed at nitrate to chloride ratios up to 1.0, the highest ratio tested. The extent of localized corrosion was confined to the crevice region of the samples, and was limitedmore » for nitrate to chloride ratios greater than or equal to 0.3.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
894340
Report Number(s):
UCRL-PROC-220367
TRN: US0700143
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Conference
Resource Relation:
Conference: Presented at: International High Level Radioactive Waste Management, Las Vegas, NV, United States, Apr 30 - May 04, 2006
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ALLOYS; AQUEOUS SOLUTIONS; BRINES; CHEMISTRY; CHLORIDES; CORROSION; CREVICE CORROSION; NITRATES; POLARIZATION; POTASSIUM; PRISMS; RADIOACTIVE WASTE MANAGEMENT; SODIUM

Citation Formats

Lian, T, Felker, S J, Hailey, P D, Staggs, K J, and Gdowski, G E. Localized Corrosion Susceptibility Of Alloy 22 In Na-K-Cl_NO3 Brines At 110 To 150?C. United States: N. p., 2006. Web.
Lian, T, Felker, S J, Hailey, P D, Staggs, K J, & Gdowski, G E. Localized Corrosion Susceptibility Of Alloy 22 In Na-K-Cl_NO3 Brines At 110 To 150?C. United States.
Lian, T, Felker, S J, Hailey, P D, Staggs, K J, and Gdowski, G E. Fri . "Localized Corrosion Susceptibility Of Alloy 22 In Na-K-Cl_NO3 Brines At 110 To 150?C". United States. doi:. https://www.osti.gov/servlets/purl/894340.
@article{osti_894340,
title = {Localized Corrosion Susceptibility Of Alloy 22 In Na-K-Cl_NO3 Brines At 110 To 150?C},
author = {Lian, T and Felker, S J and Hailey, P D and Staggs, K J and Gdowski, G E},
abstractNote = {Electrochemical cyclic potentiodynamic polarization experiments were conducted to assess crevice corrosion of Alloy 22 in de-aerated aqueous solutions of chloride and nitrate salts of potassium and sodium in the temperature range 110-150 C. The tests were run in neutral and slightly acidic aqueous solutions. The Alloy 22 specimens were multiple creviced weld prisms. No evidence of crevice corrosion was observed in the range 125-150 C. In the 120 to 160 C temperature range, the anionic concentration of stable aqueous solutions is dominated by nitrate relative to chloride. At nominally 120 C, the minimum nitrate to chloride ratio is about 4.5, and it increases to about 22 at nominally 155 C. The absence of localized corrosion susceptibility in these solutions is attributed to the known inhibiting effect of the nitrate anion. Aqueous solution chemistry studies indicate that nitrate to chloride ratios of less than 0.5 are possible for temperatures up to nominally 116 C. At 110 C, aqueous solutions can have dissolved chloride well in excess of nitrate. Localized corrosion was observed at nitrate to chloride ratios up to 1.0, the highest ratio tested. The extent of localized corrosion was confined to the crevice region of the samples, and was limited for nitrate to chloride ratios greater than or equal to 0.3.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 31 00:00:00 EST 2006},
month = {Fri Mar 31 00:00:00 EST 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Alloy 22 (a nickel-chromium-molybdenum-tungsten alloy) is being investigated for use as the outer barrier of waste containers for a high-level nuclear waste repository in the thick unsaturated zone at Yucca Mountain, Nevada. Experiments were conducted to assess crevice corrosion of Alloy 22 in de-aerated aqueous solutions of chloride and nitrate salts of potassium and sodium in the temperature range 110-150 C (some limited testing was also conducted at 90 C). Electrochemical tests were run in neutral salt solutions without acid addition and others were run in salt solutions with an initial hydrogen ion concentration of 10{sup -4} molal. The Alloymore » 22 specimens were weld prism specimens and de-aeration was performed with nitrogen gas. No evidence of crevice corrosion was observed in the range 125-150 C. In the 120 to 160 C temperature range, the anionic concentration of stable aqueous solutions is dominated by nitrate relative to chloride. At nominally 120 C, the minimum nitrate to chloride ratio is about 4.5, and it increases to about 22 at nominally 155 C. The absence of localized corrosion susceptibility in these solutions is attributed to the known inhibiting effect of the nitrate anion. At 110 C, aqueous solutions can have dissolved chloride in excess of nitrate. Localized corrosion was observed at nitrate to chloride ratios up to 1.0, the highest ratio tested. The extent of localized corrosion was confined to the crevice region of the samples, and was limited for nitrate to chloride ratios greater than or equal to 0.3. Aqueous solution chemistry studies indicate that nitrate to chloride ratios of less than 0.5 are possible for temperatures up to nominally 116 C. However, the exact upper temperature limit is unknown and no electrochemical testing was done at these temperatures. Limited comparison between 8 m Cl aqueous solutions of Na + K on the one hand and Ca on the other indicated similar electrochemical E{sub crit} values and similar morphology of attack, again limited to the crevice region. However, the 24 hr E{sub corr} value was higher for the Ca based solution; this is probably due to the higher acidity of this solution (Ca{sup 2+} is slightly hydrolyzing). Intermediate-term corrosion potential (E{sub corr}) measurements indicate that moderately acidic conditions are required to achieve elevated E{sub corr} values.« less
  • It has been postulated that the deliquescence of multiple-salt systems in dust deposits and the consequent localized corrosion in high-temperature brines could lead to premature failure of the Alloy 22 waste packages in the Yucca Mountain repository. EPRI has developed a decision tree approach to determine if the various stages leading to waste package failure are possible and whether the safety of the repository system could be compromised as a result. Through a series of arguments, EPRI has shown that it is highly unlikely that the multiple-salt deliquescent brines will form in the first place and, even if they did,more » that they would not be thermodynamically stable, that the postulated brines are not corrosive and would not lead to the initiation of localized corrosion of Alloy 22, that even if localized corrosion did initiate that the propagation would stifle and cease long before penetration of the waste package outer barrier, and that even if premature waste package failures did occur from this cause that the safety of the overall system would not be compromised. EPRI concludes, therefore, that the postulated localized corrosion of the waste packages due to high-temperature deliquescent brines is neither a technical nor a safety issue of concern for the Yucca Mountain repository. (authors)« less
  • Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightlymore » higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.« less
  • Alloy 22 is a nickel base alloy highly resistant to all forms of corrosion. In conditions where tight crevices exist in hot chloride containing solutions and at anodic potentials, Alloy 22 may suffer crevice corrosion, a form of localized attack. The occurrence (or not) of crevice corrosion in a given environment (e.g. salt concentration and temperature), is governed by the values of the critical potential (E{sub crit}) for crevice corrosion and the corrosion potential (E{sub corr}) that the alloy may establish in the studied environment. If E{sub corr} is equal or higher than E{sub crit}, crevice corrosion may be expected.more » In addition, it is generally accepted that as Alloy 22 becomes passive in a certain environment, its E{sub corr} increases and its corrosion rate (CR) decreases. This paper discusses the evolution of E{sub corr} and corrosion rate (CR) of creviced Alloy 22 specimens in six different mixtures of sodium chloride (NaCl) and potassium nitrate (KNO{sub 3}) at 100 C. The effect of immersion time on the value of E{sub crit} was also determined. Two types of specimens were used, polished as-welded (ASW) and as-welded plus solution heat-treated (ASW+SHT). The latter contained the black annealing oxide film on the surface. Results show that, as the immersion time increases, E{sub corr} increased and the CR decreased. Even for highly concentrated brine solutions at 100 C the CR was < 30 nm/year after more than 250 days immersion. Some of the exposed specimens (mainly the SHT specimens) suffered crevice corrosion at the open circuit potential in the naturally aerated brines. Immersion times of over 250 days did not reduce the resistance of Alloy 22 to localized corrosion.« less
  • Alloy 22 is a nickel base alloy highly resistant to all forms of corrosion. In very aggressive conditions (e.g. hot concentrated chloride containing brines) Alloy 22 could suffer localized attack, namely pitting and crevice corrosion. The occurrence of localized corrosion in a given environment is governed by the values of the critical potential (E{sub crit}) for crevice corrosion and the corrosion potential (E{sub corr}) that the alloy may establish in the studied environment. If E{sub corr} is equal or higher than E{sub crit}, localized corrosion may be expected. This paper discusses the evolution of E{sub corr} of Alloy 22 specimensmore » in 5 m CaCl{sub 2} + 5 m Ca(NO{sub 3}){sub 2} brines at 100 C and 120 C. Two types of specimens were used, polished as-welded (ASW) creviced and noncreviced specimens and as-welded plus solution heat-treated (ASW+SHT) creviced specimens. The latter contained the black annealing oxide film on the surface. Results show that, for all types of Alloy 22 specimens the E{sub corr} was higher at 120 C than at 100 C, probably because a more protective film formed at the higher temperature. Specimens with the black oxide film on the surface showed more oscillations in the potential. None of the tested specimens suffered crevice corrosion probably because of the relatively high concentration of nitrate in the electrolyte, R = [NO3]/[Cl] = 1.« less