skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β

Journal Article · · Proceedings of the National Academy of Sciences of the United States of America, 103(38):13985-13990

Chemokines (chemotactic cytokines) comprise a large family of proteins that recruit and activate leukocytes, giving chemokines a major role in both the immune response and inflammation-related diseases. The poxvirus-encoded viral CC chemokine inhibitor (vCCI) binds to many CC chemokines with high affinity, acting as a potent inhibitor of chemokine action. We have used heteronuclear multidimensional NMR to determine the first structure of an orthopoxvirus vCCI in complex with a human CC chemokine MIP-1β. vCCI binds to the chemokine with 1:1 stoichiometry, using residues from its β-sheet II to interact with the a surface of MIP-1β that includes the N-terminus, the following residues in the so-called N-loop20’s region, and the 40’s loop. This structure reveals a general strategy of vCCI for selective chemokine binding, as vCCI appears to interact most stronglyinteracts most directly with residues that are conserved among a subset of CC chemokines, but are not conservednot among the other chemokine subfamilies. This structure reveals a general strategy of vCCI for selective chemokine binding. Chemokines play critical roles in the immune system, causing chemotaxis of a variety of cells to sites of infection and inflammation, as well as mediating cell homing and immune system development 1(Baggiolini 2001). To date, about 50 chemokines have been identified, and these small proteins (7-14 kDa) are believed to function by binding with endothelial or matrix glycosaminoglycans to form a concentration gradient that is then sensed by high affinity, 7-transmembrane domain G-protein coupled chemokine receptors on the surface of immune cells surface. The chemokine system is critical for host defense in healthy individuals, butand can also lead to diseases including asthma, arthritis, and atherosclerosis in the case of malfunction, often due to inappropriate inflammation and subsequent tissue damage 2(Gerard and Rollins 2001). There are four subfamilies of chemokines, CC, CXC, C, and CX3C, named for the position of conserved N-terminal cysteine residues. Members of the same subfamily often have overlapping receptor binding and cell activation ability while different subfamilies tend to functionwork on different cell subsets1{Baggiolini, 2001 #472} (REF). For example, CC chemokines mostly interact with monocytes, macrophages, T cells and eosinophils, while CXC chemokines mainly interact with neutrophils. Structures of chemokines from different subfamilies have been solved by NMR and X-ray crystallography (XXX Include Fernandez and Lolis review) 3-9{Clore, 1990 #91;Skelton, 1995 #97;Handel, 1996 #93;Crump, 1997 #92;Crump, 1998 #248;Meunier, 1997 #96;Fernandez, 2002 #496}(Clore 1990; Skelton 1995; Handel and Domaille 1996; Crump, Gong et al. 1997; Meunier 1997; Crump, Rajarathnam et al. 1998)(Clore 1990; Skelton 1995; Handel and Domaille 1996; Crump et al. 1997; Meunier 1997; Crump et al. 1998).

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
893241
Report Number(s):
PNNL-SA-49364; 10296; KP1704020; TRN: US200625%%147
Journal Information:
Proceedings of the National Academy of Sciences of the United States of America, 103(38):13985-13990, Journal Name: Proceedings of the National Academy of Sciences of the United States of America, 103(38):13985-13990
Country of Publication:
United States
Language:
English