skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurement of the top quark mass using template methods on dilepton events in p anti-p collisions at s**(1/2) = 1.96-TeV

Abstract

The authors describe a measurement of the top quark mass from events produced in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. They identify t{bar t} candidates where both W bosons from the top quarks decay into leptons (e{nu}, {mu}{nu}, or {tau}{nu}) from a data sample of 360 pb{sup -1}. The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, t{bar t} longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass. For each method, representative mass distributions, or templates, are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. A likelihood fit incorporating these parameterized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1 {+-} 6.0(stat.) {+-} 4.1(syst.) GeV/c{sup 2}.

Authors:
; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
892526
Report Number(s):
FERMILAB-PUB-06-019-E
Journal ID: ISSN 0556-2821; PRVDAQ; arXiv eprint number hep-ex/0602008; TRN: US200713%%111
DOE Contract Number:
AC02-76CH03000
Resource Type:
Journal Article
Resource Relation:
Journal Name: Phys.Rev.D73:112006,2006; Journal Volume: 73
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; DECAY; FERMILAB COLLIDER DETECTOR; INTERMEDIATE BOSONS; LEPTONS; LONGITUDINAL MOMENTUM; MASS DISTRIBUTION; NEUTRINOS; PROBABILITY; PROBABILITY DENSITY FUNCTIONS; T QUARKS; Experiment-HEP

Citation Formats

Abulencia, A., Acosta, D., Adelman, Jahred A., Affolder, T., Akimoto, T., Albrow, M.G., Ambrose, D., Amerio, S., Amidei, D., Anastassov, A., Anikeev, K., and /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara. Measurement of the top quark mass using template methods on dilepton events in p anti-p collisions at s**(1/2) = 1.96-TeV. United States: N. p., 2006. Web. doi:10.1103/PhysRevD.73.112006.
Abulencia, A., Acosta, D., Adelman, Jahred A., Affolder, T., Akimoto, T., Albrow, M.G., Ambrose, D., Amerio, S., Amidei, D., Anastassov, A., Anikeev, K., & /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara. Measurement of the top quark mass using template methods on dilepton events in p anti-p collisions at s**(1/2) = 1.96-TeV. United States. doi:10.1103/PhysRevD.73.112006.
Abulencia, A., Acosta, D., Adelman, Jahred A., Affolder, T., Akimoto, T., Albrow, M.G., Ambrose, D., Amerio, S., Amidei, D., Anastassov, A., Anikeev, K., and /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara. Wed . "Measurement of the top quark mass using template methods on dilepton events in p anti-p collisions at s**(1/2) = 1.96-TeV". United States. doi:10.1103/PhysRevD.73.112006. https://www.osti.gov/servlets/purl/892526.
@article{osti_892526,
title = {Measurement of the top quark mass using template methods on dilepton events in p anti-p collisions at s**(1/2) = 1.96-TeV},
author = {Abulencia, A. and Acosta, D. and Adelman, Jahred A. and Affolder, T. and Akimoto, T. and Albrow, M.G. and Ambrose, D. and Amerio, S. and Amidei, D. and Anastassov, A. and Anikeev, K. and /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara},
abstractNote = {The authors describe a measurement of the top quark mass from events produced in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. They identify t{bar t} candidates where both W bosons from the top quarks decay into leptons (e{nu}, {mu}{nu}, or {tau}{nu}) from a data sample of 360 pb{sup -1}. The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, t{bar t} longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass. For each method, representative mass distributions, or templates, are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. A likelihood fit incorporating these parameterized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1 {+-} 6.0(stat.) {+-} 4.1(syst.) GeV/c{sup 2}.},
doi = {10.1103/PhysRevD.73.112006},
journal = {Phys.Rev.D73:112006,2006},
number = ,
volume = 73,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2006},
month = {Wed Feb 01 00:00:00 EST 2006}
}
  • We describe a measurement of the top quark mass from events produced in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. We identify t{bar t} candidates where both W bosons from the top quarks decay into leptons (e{nu}, {mu}{nu}, or {tau}{nu}) from a data sample of 360 pb-1. The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, t{bar t} longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass. For eachmore » method, representative mass distributions, or templates, are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. A likelihood fit incorporating these parameterized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1{+-}6.0(stat.){+-}4.1(syst.) GeV/c{sup 2}.« less
  • We describe a measurement of the top quark mass from events produced in pp collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. We identify tt candidates where both W bosons from the top quarks decay into leptons (e{nu}, {mu}{nu}, or {tau}{nu}) from a data sample of 360 pb{sup -1}. The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, tt longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass. For each method, representativemore » mass distributions, or templates, are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. A likelihood fit incorporating these parametrized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1{+-}6.0(stat.){+-}4.1(syst.) GeV/c{sup 2}.« less
  • This report describes a measurement of the top quark mass, M{sub top}, with the dynamical likelihood method (DLM) using the CDF II detector at the Fermilab Tevatron. The Tevatron produces top/anti-top (t{bar t}) pairs in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The data sample used in this analysis was accumulated from March 2002 through August 2004, which corresponds to an integrated luminosity of 318 pb{sup -1}. They use the t{bar t} candidates in the ''lepton+jets'' decay channel, requiring at least one jet identified as a b quark by finding an displaced secondary vertex. The DLM definesmore » a likelihood for each event based on the differential cross section as a function of M{sub top} per unit phase space volume of the final partons, multiplied by the transfer functions from jet to parton energies. The method takes into account all possible jet combinations in an event, and the likelihood is multiplied event by event to derive the top quark mass by the maximum likelihood method. Using 63 t{bar t} candidates observed in the data, with 9.2 events expected from background, they measure the top quark mass to be 173.2{sub -2.4}{sup +2.6}(stat.) {+-} 3.2(syst.) GeV/c{sup 2}, or 173.2{sub -4.0}{sup +4.1} GeV/c{sup 2}.« less
  • We report the first measurement of the top quark mass using the decay length technique in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. This technique uses the measured flight distance of the b hadron to infer the mass of the top quark in lepton plus jets events with missing transverse energy. It relies solely on tracking and avoids the jet energy scale uncertainty that is common to all other methods used so far. We apply our novel method to a 695 pb{sup -1} data sample recorded by the CDF II detector at Fermilab and extract a measurementmore » of m{sub t} = 180.7{sub -13.4}{sup +15.5}(stat.) {+-} 8.6 (syst.) GeV/c{sup 2}. While the uncertainty of this result is larger than that of other measurements, the dominant uncertainties in the decay length technique are uncorrelated with those in other methods. This result can help reduce the overall uncertainty when combined with other existing measurements of the top quark mass.« less
  • This paper reports a measurement of the cross section for the pair production of top quarks in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF II detector in a set of runs with a total integrated luminosity of 1.1 fb{sup -1}. The cross section is measured in the dilepton channel, the subset of t{bar t} events in which both top quarks decay through t {yields} Wb {yields} {ell}{nu}b, where {ell} = e, {mu}, or {tau}. The lepton pair is reconstructed as one identified electron or muon and one isolatedmore » track. The use of an isolated track to identify the second lepton increases the t{bar t} acceptance, particularly for the case in which one W decays as W {yields} {tau}{nu}. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b-jet. They present the results of measurements performed with and without the request of an identified b-jet. the former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a likelihood. The result is {sigma}{sub t{bar t}} = 9.6 {+-} 1.2(stat.){sub -0.5}{sup +0.6}(sys.) {+-} 0.6(lum.) pb, assuming a branching ratio of BR(W {yields} {ell}{nu}) = 10.8% and a top mass of m{sub t} = 175 GeV/c{sup 2}.« less