skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physics at a new Fermilab proton driver

Abstract

In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ''Study on the Physics of Neutrinos'' concluded that the future US neutrino program should have, as one of its components, ''A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing Cp violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

Authors:
;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
892512
Report Number(s):
FERMILAB-CONF-06-072-E
arXiv eprint number hep-ph/0604024; TRN: US0701122
DOE Contract Number:
AC02-76CH03000
Resource Type:
Conference
Resource Relation:
Conference: Presented at 3rd International Workshop on NO-VE: Neutrino Oscillations in Venice: 50 Years after the Neutrino Experimental Discovery, Venice, Italy, 7-10 Feb 2006
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ACCURACY; FERMILAB; LINEAR COLLIDERS; NEUTRINO OSCILLATION; NEUTRINOS; PHYSICS; PLANNING; PROTONS; Phenomenology-HEP

Citation Formats

Geer, Steve, and /Fermilab. Physics at a new Fermilab proton driver. United States: N. p., 2006. Web.
Geer, Steve, & /Fermilab. Physics at a new Fermilab proton driver. United States.
Geer, Steve, and /Fermilab. Sat . "Physics at a new Fermilab proton driver". United States. doi:. https://www.osti.gov/servlets/purl/892512.
@article{osti_892512,
title = {Physics at a new Fermilab proton driver},
author = {Geer, Steve and /Fermilab},
abstractNote = {In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ''Study on the Physics of Neutrinos'' concluded that the future US neutrino program should have, as one of its components, ''A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing Cp violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EST 2006},
month = {Sat Apr 01 00:00:00 EST 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened amore » new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also supporting a vigorous 8 GeV fixed-target program. In addition, a Proton Driver might also serve as a stepping-stone to future accelerators, both as an R&D test bed and as an injector, with connections to the Linear Collider, Neutrino Factories, and a VLHC. Hence, although neutrino physics would provide the main thrust for the science program at an upgraded Fermilab proton source, the new facility would also offer exciting opportunities for other fixed-target particle physics (kaons, muons, neutrons, antiprotons, etc.) and a path towards new accelerators in the future.« less
  • In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.
  • In the design report of the Fermilab Proton Driver [1], the Main Injector (MI) needs to be upgraded to a 2 MW machine. For the Main Injector radiofrequency (rf) upgrade, R&D efforts are launched to design and build a new rf system. This paper presents the new cavity design study for the rf system. The cavity is simulated with the design code Mafia [2].
  • In order to enhance Fermilab hadron research program and to provide a proton source to a future muon storage ring or a muon collider, the study of a new high intensity proton ma-chine called the Proton Driver is being pursued at Fermilab. It would replace the present linac and 8 GeV Booster and produce 20 times the proton intensity as the Booster. This paper gives a status report on a number of design issues of this machine.
  • Fermilab has started the design work of a high intensity proton source called the proton driver. It would provide a 4 MW proton beam to the target for muon production. This paper discusses the basic features of this machine and the associated accelerator physics and design issues.