skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High {sup 222}Rn levels, enhanced plateout, increased diffusion coefficient

Journal Article · · Transactions of the American Nuclear Society
OSTI ID:89249

In a previous study of plateout and resuspension effects for {sup 222}Rn progeny, an unexpected suppression of the airborne {sup 218}Po and {sup 214}Po levels, which is total unrelated and not predicted by theory or other works, was observed when high {sup 222}Rn concentrations were utilized in a 0.283-m{sup 3} test chamber. Two separate time-dependent methods were used and are reported here to measure this airborne progeny suppression effect to attempt to possibly determine the magnitude and cause of the effect and possible consequences on prior and current ongoing radon research by others. The earlier buildup method was used to observe the buildup phase of {sup 222} Rn and its daughters from a constant emanation source, a constant air change rate (ACH), and initially zero concentrations Rn and progeny. The data were compared with theory using Leonard`s solutions to the Bateman equations to determine the magnitude of the suppression. The second method, referred to as the {open_quotes}down{close_quotes} method, was to measure the decrease in {sup 222}Rn and progeny concentrations from an initially injected high {sup 222}Rn activity concentration in the test chamber, the decrease resulting from a constant ACH of {approximately}0.1 h{sup -1} imposed by the gradual removal of air from the chamber at a constant rate of {approximately}0.5 l/min. No {sup 222}Rn emanation source was present during the second method after the initial injection so that the level of the {sup 222}Rn underwent a monotonic decrease in concentration.

OSTI ID:
89249
Report Number(s):
CONF-941102-; ISSN 0003-018X; TRN: 95:004215-0326
Journal Information:
Transactions of the American Nuclear Society, Vol. 71; Conference: Winter meeting of the American Nuclear Society (ANS), Washington, DC (United States), 13-18 Nov 1994; Other Information: PBD: 1994
Country of Publication:
United States
Language:
English