skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

Abstract

We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtainmore » three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; « less
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
892454
Report Number(s):
FERMILAB-PUB-06-008-A
arXiv eprint number astro-ph/0601346; TRN: US200702%%302
DOE Contract Number:
AC02-76CH03000
Resource Type:
Journal Article
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; DISTRIBUTION; FIBERS; GALAXIES; MULTIPLICITY; NONLUMINOUS MATTER; SKY; VELOCITY; Astrophysics

Citation Formats

Berlind, Andreas A., Frieman, Joshua A., Weinberg, David H., Blanton, Michael R., Warren, Michael S., Abazajian, Kevork, Scranton, Ryan, Hogg, David W., Scoccimarro, Roman, Bahcall, Neta A., Brinkmann, J., Gott, J.Richard, III, Kleinman, S.J., Krzesinski, J., Lee, Brian C., Miller, Christopher J., Nitta, Atsuko, Schneider, Donald P., Tucker, Douglas L., Zehavi, Idit, and /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function. United States: N. p., 2006. Web. doi:10.1086/508170.
Berlind, Andreas A., Frieman, Joshua A., Weinberg, David H., Blanton, Michael R., Warren, Michael S., Abazajian, Kevork, Scranton, Ryan, Hogg, David W., Scoccimarro, Roman, Bahcall, Neta A., Brinkmann, J., Gott, J.Richard, III, Kleinman, S.J., Krzesinski, J., Lee, Brian C., Miller, Christopher J., Nitta, Atsuko, Schneider, Donald P., Tucker, Douglas L., Zehavi, Idit, & /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function. United States. doi:10.1086/508170.
Berlind, Andreas A., Frieman, Joshua A., Weinberg, David H., Blanton, Michael R., Warren, Michael S., Abazajian, Kevork, Scranton, Ryan, Hogg, David W., Scoccimarro, Roman, Bahcall, Neta A., Brinkmann, J., Gott, J.Richard, III, Kleinman, S.J., Krzesinski, J., Lee, Brian C., Miller, Christopher J., Nitta, Atsuko, Schneider, Donald P., Tucker, Douglas L., Zehavi, Idit, and /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.. Sun . "Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function". United States. doi:10.1086/508170. https://www.osti.gov/servlets/purl/892454.
@article{osti_892454,
title = {Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function},
author = {Berlind, Andreas A. and Frieman, Joshua A. and Weinberg, David H. and Blanton, Michael R. and Warren, Michael S. and Abazajian, Kevork and Scranton, Ryan and Hogg, David W. and Scoccimarro, Roman and Bahcall, Neta A. and Brinkmann, J. and Gott, J.Richard, III and Kleinman, S.J. and Krzesinski, J. and Lee, Brian C. and Miller, Christopher J. and Nitta, Atsuko and Schneider, Donald P. and Tucker, Douglas L. and Zehavi, Idit and /CCPP, New York /Chicago U., Astron. Astrophys. Ctr. /Ohio State U., Dept. Astron. /Los Alamos /Pittsburgh U. /Princeton U. /Subaru Telescope /Apache Point Observ. /Mt. Suhora Observ., Cracow /LBL, Berkeley /Cerro-Tololo InterAmerican Obs. /Penn State U., Astron. Astrophys. /Fermilab /Arizona U., Astron. Dept. - Steward Observ. /Case Western Reserve U.},
abstractNote = {We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups with ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.},
doi = {10.1086/508170},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in amore » manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.« less
  • A constraint on the viable f(R) model is investigated by confronting theoretical predictions with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky Survey, data release 7. We obtain a constraint on the Compton wavelength parameter of the f(R) model on the scales of cosmological large-scale structure. A prospect of constraining the Compton wavelength parameter with a future redshift survey is also investigated. The usefulness of the redshift-space distortion for testing the gravity theory on cosmological scales is demonstrated.
  • We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift survey, the main galaxy sample of the Sloan Digital Sky Survey Seventh Data Release. We focus on the projected correlation function w{sub p} (r{sub p}) of volume-limited samples, extracted from the parent sample of {approx}700,000 galaxies over 8000 deg{sup 2}, extending up to redshift of 0.25. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a {Lambda}CDM cosmology (inflationary cold dark matter with a cosmological constant). The amplitude of w{sub p} (r{sub p}) grows slowly with luminosity for L < L{sub *} andmore » increases sharply at higher luminosities, with a large-scale bias factor b(> L) x ({sigma}{sub 8}/0.8) = 1.06 + 0.21(L/L{sub *}){sup 1.12}, where L is the sample luminosity threshold. At fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady trend that runs through the 'blue cloud' and 'green valley' and continues across the 'red sequence'. The cross-correlation of red and blue galaxies is close to the geometric mean of their autocorrelations, dropping slightly below at r{sub p} < 1 h{sup -1} Mpc. The luminosity trends for the red and blue galaxy populations separately are strikingly different. Blue galaxies show a slow but steady increase of clustering strength with luminosity, with nearly constant shape of w{sub p} (r{sub p}). The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4 L{sub *}, but the lowest luminosity red galaxies (0.04-0.25 L{sub *}) show very strong clustering on small scales (r{sub p} < 2 h{sup -1} Mpc). Most of the observed trends can be naturally understood within the {Lambda}CDM+HOD framework. The growth of w{sub p} (r{sub p}) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter halos, in particular an increase in the minimum host halo mass M{sub min}. The mass at which a halo has, on average, one satellite galaxy brighter than L is M{sub 1} {approx} 17 M{sub min}(L) over most of the luminosity range, with a smaller ratio above L{sub *}. The growth and steepening of w{sub p} (r{sub p}) for redder galaxies reflects the increasing fraction of galaxies that are satellite systems in high-mass halos instead of central systems in low-mass halos, a trend that is especially marked at low luminosities. Our extensive measurements, provided in tabular form, will allow detailed tests of theoretical models of galaxy formation, a firm grounding of semiempirical models of the galaxy population, and new constraints on cosmological parameters from combining real-space galaxy clustering with mass-sensitive statistics such as redshift-space distortions, cluster mass-to-light ratios, and galaxy-galaxy lensing.« less
  • Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of Brightest Cluster Galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {le} z {le} 0.3. The size of the dataset allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r200 of clusters with mass above 3x10{sup 13}h{sup -1}M{sub {circle_dot}}, the luminosity function of both red and blue satellites ismore » only weakly dependent on richness. We further find that the shape of the satellite luminosity function does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25}M{sub i} - 5log{sub 10}h = -19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L{sub BCG} {approx} M{sup 0.3}{sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub log}L {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.« less
  • Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of brightest cluster galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 {<=} z {<=} 0.3. The size of the data set allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r {sub 200} of clusters with mass above 3 x 10{sup 13} h {sup -1} M {sub sun}, themore » luminosity function (LF) of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite LF does not depend on cluster-centric distance for magnitudes brighter than {sup 0.25} M{sub i} - 5log{sub 10} h =-19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity, and cluster mass, and also increases by {approx}5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L {sub BCG} {approx} M {sup 0.3} {sub 200}, and has a Gaussian distribution at fixed richness, with {sigma}{sub logL} {approx} 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data.« less