skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Well ER-6-1 Tracer Test Analysis: Yucca Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

Technical Report ·
DOI:https://doi.org/10.2172/892034· OSTI ID:892034

The ER-6-1 multiple-well aquifer test-tracer test (MWAT-TT) investigated groundwater flow and transport processes relevant to the transport of radionuclides from sources on the Nevada Test Site (NTS) through the lower carbonate aquifer (LCA) hydrostratigraphic unit (HSU). The LCA, which is present beneath much of the NTS, is the principal aquifer for much of southern Nevada. This aquifer consists mostly of limestone and dolomite, and is pervasively fractured. Groundwater flow in this aquifer is primarily in the fractures, and the hydraulic properties are primarily related to fracture frequency and fracture characteristics (e.g., mineral coatings, aperture, connectivity). The objective of the multiple-well aquifer test (MWAT) was to determine flow and hydraulic characteristics for the LCA in Yucca Flat. The data were used to derive representative flow model and parameter values for the LCA. The items of specific interest are: Hydraulic conductivity; Storage parameters; Dual-porosity behavior; and Fracture flow characteristics. The objective of the tracer transport experiment was to evaluate the transport properties and processes of the LCA and to derive representative transport parameter values for the LCA. The properties of specific interest are: Effective porosity; Matrix diffusion; Longitudinal dispersivity; Adsorption characteristics; and Colloid transport characteristics. These properties substantially control the rate of transport of contaminants in the groundwater system and concentration distributions. To best support modeling at the scale of the corrective action unit (CAU), these properties must be investigated at the field scale. The processes represented by these parameters are affected by in-situ factors that are either difficult to investigate at the laboratory scale or operate at a much larger scale than can be reproduced in the laboratory. Measurements at the field scale provide a better understanding of the effective average parameter values. The scale of this tracer test is still small compared to the scale of a CAU, but is of sufficient scale to be generally representative of the processes that affect in-situ transport. The scale of the tracer test undertaken is limited by the rate of transport in the formation and the resultant time frame required for completing such a test. The measurements at the field scale will provide information for relating laboratory measurements for transport processes to the larger scale. This report describes the analysis of the tracer test data and development of a conceptual model of transport in the LCA in Yucca Flat.

Research Organization:
Stoller-Navarro Joint Venture
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC52-03NA99205
OSTI ID:
892034
Report Number(s):
S-N/99205-084; TRN: US200622%%569
Country of Publication:
United States
Language:
English