skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report for Grant DE-FG02-90ER61072

Abstract

This is the final report for the work done by our research group at the Atmospheric Sciences Research Center for the US DOE Atmopheric Radiation Measurement (ARM) Program. We were involved from the beginning of the ARM effort; we designed the Multi-filter Rotating Shadowband Spectroradiometer (MFRSR) which was widely deployed (and still operational in ARM) and through the years did a wide variety of data analysis on the returned data from these instruments. We also developed the Rotating Shadowband Spectroradiometer, which ARM deployed and also still deploys. Many scientific papers have been written using the data from these instruments, and the ongoing data streams remain part of the current ARM effort. Earlier reports contain our progress from previous grant periods, this report covers the last period and provides references to published work.

Authors:
Publication Date:
Research Org.:
Atmospheric Sciences Research Center, State University of New York, Albany
Sponsoring Org.:
USDOE - Office of Energy Research (ER)
OSTI Identifier:
891452
Report Number(s):
DOE/FG/11111-1
TRN: US200719%%794
DOE Contract Number:
FG02-90ER61072
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; DATA ANALYSIS; RADIATIONS; US DOE; Atmospheric Radiation, Spectrometry, Atmospheric Turbidity, Clouds, Radiation Transfer

Citation Formats

Lee Harrison. Final Report for Grant DE-FG02-90ER61072. United States: N. p., 2006. Web. doi:10.2172/891452.
Lee Harrison. Final Report for Grant DE-FG02-90ER61072. United States. doi:10.2172/891452.
Lee Harrison. Mon . "Final Report for Grant DE-FG02-90ER61072". United States. doi:10.2172/891452. https://www.osti.gov/servlets/purl/891452.
@article{osti_891452,
title = {Final Report for Grant DE-FG02-90ER61072},
author = {Lee Harrison},
abstractNote = {This is the final report for the work done by our research group at the Atmospheric Sciences Research Center for the US DOE Atmopheric Radiation Measurement (ARM) Program. We were involved from the beginning of the ARM effort; we designed the Multi-filter Rotating Shadowband Spectroradiometer (MFRSR) which was widely deployed (and still operational in ARM) and through the years did a wide variety of data analysis on the returned data from these instruments. We also developed the Rotating Shadowband Spectroradiometer, which ARM deployed and also still deploys. Many scientific papers have been written using the data from these instruments, and the ongoing data streams remain part of the current ARM effort. Earlier reports contain our progress from previous grant periods, this report covers the last period and provides references to published work.},
doi = {10.2172/891452},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 20 00:00:00 EST 2006},
month = {Mon Feb 20 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecologicalbiogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to anmore » increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the first three years of our project, led to several major new insights on the interaction between ocean biogeochemistry and circulation. This work, which is described in 2 the following Section II on “Large scale fertilization,” has continued to appear in the literature over the past few years, including two high visibility papers in Nature. Early on in the first three years of our project, it became clear that small "patch-scale" fertilizations over limited regions of order 100 km diameter were much more likely than large scale fertilization, and we carried out a series of idealized patch fertilization simulations reported on in Gnanadesikan et al. (2003). Based on this paper and other results we had obtained by the end of our first three-year grant, we identified a number of important issues that needed to be addressed in the second three-year period of this grant. Section III on “patch fertilization” discusses the major findings of this phase of our research, which is described in two major manuscripts that will be submitted for publication in the near future. This research makes use of new more realistic ocean ecosystem and iron cycling models than our first paper on this topic. We have several major new insights into what controls the efficiency of iron fertilization in the ocean. Section IV on “model development” summarizes a set of papers describing the progress that we made on improving the ecosystem models we use for our iron fertilization simulations.« less
  • A brief summary of the experimental objectives and a listing of publications which have resulted from the Iowa State University High Energy Physics Alpha Group / Program for the period of 1985 - 2000 are given.
  • A report of the research conducted on the mechanism of cellulose synthesis by Agrobacterium tumefaciens.
  • Prior to 1997, the PI had studied the unusual upper critical magnetic field phase boundaries of several novel or exotic types of superconductors, including charge density wave materials such as NbSe 2, organic superconductors such as κ-(ET) 2Cu[N(CN) 2]Br, high-temperature oxide superconductors such as (Ba,K)BiO 3 and the cuprates, heavy fermion superconductors such as U 6Fe, UBe 13, URu 2Si 2 and UPt 3, and re-entrant Kondo alloys such as (La,Ce)Al 2 and ferromagnetic superconductors such as ErRh 4B 4. Most of these materials exhibited marked positive or negative curvature of H C2(T) which could not be explained by traditionalmore » pair-breaking models. It became clear that many of these materials had very short coherence lengths that made quantized vortices highly mobile (depinned) near the phase boundary, and the fundamental, equilibrium H C2(T) difficult to measure using finite field or current drives. These problems made the underlying physics obscure, and led to erroneous interpretations of experimental data in terms of models of exotic superconducting pairing mechanisms. Around 1995, these issues led the PI to take advantage of modern electron beam lithography techniques for patterning superconducting and ferromagnetic thin films on the nanoscale. Primarily due to strong magnetic shape anisotropy effects, EBL patterning has led to enhanced control of the spatial distribution and dynamics of topological defects such as domain walls and magnetic vortices, which can create serious energy dissipation and other limitations for modern devices. Moreover, finite size and interface effects also strongly alter phase transition temperatures and phase boundaries of superconducting and magnetic films, as well as introduce barriers to equilibration, enhanced fluctuations and alter magnetic relaxation. Geometrical frustration and spin ice behavior can also be systematically controlled in patterned film media. Film patterning thus provides an excellent tool for conducting highly-controlled, fundamental studies of cooperative phases and interactions in artificially structured condensed matter.« less
  • Properties of highly correlated electrons, such as heavy fermion compounds, metal-insulator transitions, one-dimensional conductors and systems of restricted dimensionality are studied theoretically. The main focus is on Kondo insulators and impurity bands due to Kondo holes, the low-temperature magnetoresistivity of heavy fermion alloys, the n-channel Kondo problem, mesoscopic systems and one-dimensional conductors.