skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiation Effects in Lanthanum Pyrozirconate

Journal Article · · Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 250(1-2):17-23

The present paper reviews recent results on radiation resistance of lanthanum pyrozirconate obtained using empirical potentials molecular dynamic simulations. First, displacement cascades (DCs) with a 6 keV U4+ cation representing the ?- recoil nucleus have been performed in the lanthanum pyrozirconate La2Zr2O7. Only point defects are observed after each DC. They represent on average only 10% of the total number of displaced atoms during the cascade, with two times more cation anti-sites than Frenkel pairs. These calculations indicate that amorphization does not occur by a direct impact mechanism in pyrozirconate. Second, consequences of point defects accumulation have been simulated by introducing different types--either cation anti-sites or Frenkel pairs--and concentrations of point defects in pyrochlore. Results show that cation Frenkel pairs accumulation is the driving force for lanthanum zirconate amorphization. Under cation Frenkel pair accumulation, the crystal transits first from the pyrochlore to the disordered fluorite structure, with the oxygen atoms simply rearranging around cations. Amorphization occurs as a second step. These results consequently provide atomic-level interpretation to experimental irradiation observations of a two-step phase transition.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
891409
Report Number(s):
PNNL-SA-46459; TRN: US0605353
Journal Information:
Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 250(1-2):17-23, Journal Name: Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 250(1-2):17-23
Country of Publication:
United States
Language:
English

Similar Records

Atomistic Simulation of Amorphization Thermokinetics in Lanthanum Pyrozirconate
Journal Article · Mon Jan 30 00:00:00 EST 2006 · Applied Physics Letters · OSTI ID:891409

Molecular Dynamic Simulation of Disorder Induced Amorphization in Pyrochlore
Journal Article · Fri Jan 21 00:00:00 EST 2005 · Physical Review Letters · OSTI ID:891409

Atomistic Modeling of Displacement Cascades in La2Zr2O7 Pyrochlore
Journal Article · Thu May 01 00:00:00 EDT 2003 · Physical Review. B, Condensed Matter and Materials Physics, 67(17):174102, 1-13 · OSTI ID:891409