skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DEVELOPMENT OF MONOSODIUM TITANATE (MST) PURCHASE SPECIFICATIONS

Abstract

Savannah River National Laboratory (SRNL) evaluated the previous monosodium titanate (MST) purchase specifications for particle size and strontium decontamination factor. Based on the measured particle size and filtration performance characteristics of several MST samples with simulated waste solutions and various filter membranes we recommend changing the particle size specification as follows. The recommended specification varies with the size and manufacturer of the filter membrane as shown below. We recommend that future batches of MST received at SRS be tested for particle size and filtration performance. This will increase the available database and provide increased confidence that particle size parameters are an accurate prediction of filtration performance. Testing demonstrated the feasibility of a non-radiochemical method for evaluating strontium removal performance of MST samples. Using this analytical methodology we recommend that the purchase specification include the requirement that the MST exhibits a strontium DF factor of >1.79 upon contact with a simulated waste solution with composition as reported for simulated waste solution SWS-7-2005-1 in Table 1 and containing 5.2 to 5.7 mg L{sup -1} strontium with 0.1 g L{sup -1} of the MST. We also recommend performing additional tests with these simulants and MST samples and, if available, new MST samples, tomore » determine the reproducibility and increase the available database for the measurements by the ICP-ES instrument. These measurements will provide increased confidence that the non-radiological method provides a reliable method for evaluating the strontium and actinide removal performance for MST samples.« less

Authors:
Publication Date:
Research Org.:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
890211
Report Number(s):
WSRC-TR-2006-00039
TRN: US0604621
DOE Contract Number:  
DE-AC09-96SR18500
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 36 MATERIALS SCIENCE; SODIUM COMPOUNDS; TITANATES; SPECIFICATIONS; PROCUREMENT; SAVANNAH RIVER PLANT; RADIOACTIVE WASTE FACILITIES; PARTICLE SIZE; ACTINIDES; REMOVAL; STRONTIUM

Citation Formats

Hobbs, D. DEVELOPMENT OF MONOSODIUM TITANATE (MST) PURCHASE SPECIFICATIONS. United States: N. p., 2006. Web. doi:10.2172/890211.
Hobbs, D. DEVELOPMENT OF MONOSODIUM TITANATE (MST) PURCHASE SPECIFICATIONS. United States. https://doi.org/10.2172/890211
Hobbs, D. 2006. "DEVELOPMENT OF MONOSODIUM TITANATE (MST) PURCHASE SPECIFICATIONS". United States. https://doi.org/10.2172/890211. https://www.osti.gov/servlets/purl/890211.
@article{osti_890211,
title = {DEVELOPMENT OF MONOSODIUM TITANATE (MST) PURCHASE SPECIFICATIONS},
author = {Hobbs, D},
abstractNote = {Savannah River National Laboratory (SRNL) evaluated the previous monosodium titanate (MST) purchase specifications for particle size and strontium decontamination factor. Based on the measured particle size and filtration performance characteristics of several MST samples with simulated waste solutions and various filter membranes we recommend changing the particle size specification as follows. The recommended specification varies with the size and manufacturer of the filter membrane as shown below. We recommend that future batches of MST received at SRS be tested for particle size and filtration performance. This will increase the available database and provide increased confidence that particle size parameters are an accurate prediction of filtration performance. Testing demonstrated the feasibility of a non-radiochemical method for evaluating strontium removal performance of MST samples. Using this analytical methodology we recommend that the purchase specification include the requirement that the MST exhibits a strontium DF factor of >1.79 upon contact with a simulated waste solution with composition as reported for simulated waste solution SWS-7-2005-1 in Table 1 and containing 5.2 to 5.7 mg L{sup -1} strontium with 0.1 g L{sup -1} of the MST. We also recommend performing additional tests with these simulants and MST samples and, if available, new MST samples, to determine the reproducibility and increase the available database for the measurements by the ICP-ES instrument. These measurements will provide increased confidence that the non-radiological method provides a reliable method for evaluating the strontium and actinide removal performance for MST samples.},
doi = {10.2172/890211},
url = {https://www.osti.gov/biblio/890211}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Apr 30 00:00:00 EDT 2006},
month = {Sun Apr 30 00:00:00 EDT 2006}
}