skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Next generation of scientists workshop.

Abstract

No abstract prepared.

Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
889943
Report Number(s):
SAND2006-3692C
TRN: US200620%%30
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for distribution following the Next Generation of Scientists Workshop, April 3-7, 2006, Albuquerque, NM.
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; SCIENTIFIC PERSONNEL; MEETINGS; EDUCATION

Citation Formats

Not Available. Next generation of scientists workshop.. United States: N. p., 2006. Web.
Not Available. Next generation of scientists workshop.. United States.
Not Available. Sat . "Next generation of scientists workshop.". United States. doi:.
@article{osti_889943,
title = {Next generation of scientists workshop.},
author = {Not Available},
abstractNote = {No abstract prepared.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EST 2006},
month = {Sat Apr 01 00:00:00 EST 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Our ability to produce the next generation of scientists and engineers is dependent upon two important demographic changes: the trends in the number of births and the increasingly diverse racial and ethnic backgrounds of those already born. The number of births dropped 25% from 1956 to 1976. As a consequence, the number of high school graduates dropped from 3.1 million in 1977 to 2.4 million in 1992 and will not reach the 1977 high until after 2000. More than half of these graduates are women, and one of every four is a member of minority group. Women now make upmore » more than half of all undergraduates and almost half of all graduate students, but are underrepresented in the natural science and engineering fields. Minority students are about half as likely to be enrolled in college as white students. About 32% of all precollege students and 20% of all college students are members of minority groups. Based on current graduate enrollment figures in natural science and engineering, there will be little increase in women`s share of doctorates in the next several years. The number of PhDs earned by American minorities continues to be very small. Not known is when our economy will require more professionals trained in science and engineering. But any serious attempt to increase the number of students eligible to choose college majors in science or engineering must take both sex and race/ethnicity into account. The nation cannot afford to waste the talent in two-thirds of our increasingly diverse population.« less
  • Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, crossdisciplinary research areas such as high energy density physics.
  • The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and mathmore » (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)« less
  • The first day of the workshop was devoted to four plenary issues'' talks, one for each working group: Beam-Beam Interaction, Detector, Hardware, and Optical Design. The last day was devoted to plenary talks summarizing the activities of the working groups. Each of the three remaining days there,was a short morning plenary devoted to a brief summary of the preceding day and an announcement of planned working group discussions for that day. The transparencies for the issues'' and summary'' talks are included in this volume, along with some remarks from the working group chairpersons. Very briefly, the beam-beam group continued tomore » address the quantitative study of QED induced backgrounds, and attempted to better understand the nature and prevalence of QCD millijets. The detector group attempted to identify the impact on masking and detector design of the beam-beam backgrounds, the synchrotron radiation induced backgrounds from beam halos and muon backgrounds produced primarily in collimators. Nanosecond timing elements needed in conjunction with multi-bunch operation were discussed. The hardware group addressed the problem of magnet design and support, especially the final doublet magnets suspended within the detector environment, and instrumentation issues, such as high resolution beam position monitors. The optics group discussed new final focus system ideas, collimator design, and improvement of beamline tolerances. If you were not here to participate, we hope that this volume will help you in your orientation to these problems.« less
  • In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguardsmore » Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and professional societies who either are experts in international safeguards, or understand the challenges of recruiting for technical positions. The 44 participants represented eight national laboratories, four universities, three government organizations, two international organizations, two professional organizations, and three small companies. The goal of the ERIS workshop was to improve efforts to engage U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. At the workshop's conclusion, participants presented their findings to the NNSA Office of International Regimes and Agreements (NA-243). The report's major findings are summarized.« less