skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The mitochondrial genome of the entomophagous endoparasite Xenosvesparum (Insecta: Strepsiptera)

Abstract

In this study, the nearly complete sequence (14,519 bp) of the mitochondrial DNA (mtDNA) of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera) is described. All protein coding genes (PCGs) are in the arrangement known to be ancestral for insects, but three tRNA genes (trnA, trnS(gcu), and trnL(uag)) have transposed to derived positions and there are three tandem copies of trnH, each of which is potentially functional. All of these rearrangements except for that of trnL(uag) is within the short span between nad3 and nad4 and there are numerous blocks of unassignable sequence in this region, perhaps as remnants of larger scale predisposing rearrangements. X. vesparum mtDNA nucleotide composition is strongly biased toward As and Ts, as is typical for insect mtDNAs. There is also significant strand skew in the distribution of these nucleotides, with the J-strand being richer in A than T and in C than G, and the N-strand showing an opposite skew for complementary pairs of nucleotides. The hypothetical secondary structure of the 16S rRNA has also been reconstructed, obtaining a structural model similar to that of other insects.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
Sponsoring Org.:
USDOE Director. Office of Science. Office of Biological andEnvironmental Research Program; Italian MUIR(PRIN), University of Siena(PAR)
OSTI Identifier:
889896
Report Number(s):
LBNL-59178
Journal ID: ISSN 0378-1119; GENED6; R&D Project: Y00010; BnR: 600305000; TRN: US200620%%77
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Gene; Journal Volume: 376; Journal Issue: 2; Related Information: Journal Publication Date: 07/19/2006
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; DISTRIBUTION; DNA; GENES; INSECTS; NUCLEOTIDES; PROTEINS; STRUCTURAL MODELS; mtDNA gene order codon usage tRNA A+T content strand nucleotidebias

Citation Formats

Carapelli, Antonio, Vannini, Laura, Nardi, Francesco, Boore,Jeffrey L., Beani, Laura, Dallai, Romano, and Frati, Francesco. The mitochondrial genome of the entomophagous endoparasite Xenosvesparum (Insecta: Strepsiptera). United States: N. p., 2005. Web.
Carapelli, Antonio, Vannini, Laura, Nardi, Francesco, Boore,Jeffrey L., Beani, Laura, Dallai, Romano, & Frati, Francesco. The mitochondrial genome of the entomophagous endoparasite Xenosvesparum (Insecta: Strepsiptera). United States.
Carapelli, Antonio, Vannini, Laura, Nardi, Francesco, Boore,Jeffrey L., Beani, Laura, Dallai, Romano, and Frati, Francesco. Thu . "The mitochondrial genome of the entomophagous endoparasite Xenosvesparum (Insecta: Strepsiptera)". United States. doi:. https://www.osti.gov/servlets/purl/889896.
@article{osti_889896,
title = {The mitochondrial genome of the entomophagous endoparasite Xenosvesparum (Insecta: Strepsiptera)},
author = {Carapelli, Antonio and Vannini, Laura and Nardi, Francesco and Boore,Jeffrey L. and Beani, Laura and Dallai, Romano and Frati, Francesco},
abstractNote = {In this study, the nearly complete sequence (14,519 bp) of the mitochondrial DNA (mtDNA) of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera) is described. All protein coding genes (PCGs) are in the arrangement known to be ancestral for insects, but three tRNA genes (trnA, trnS(gcu), and trnL(uag)) have transposed to derived positions and there are three tandem copies of trnH, each of which is potentially functional. All of these rearrangements except for that of trnL(uag) is within the short span between nad3 and nad4 and there are numerous blocks of unassignable sequence in this region, perhaps as remnants of larger scale predisposing rearrangements. X. vesparum mtDNA nucleotide composition is strongly biased toward As and Ts, as is typical for insect mtDNAs. There is also significant strand skew in the distribution of these nucleotides, with the J-strand being richer in A than T and in C than G, and the N-strand showing an opposite skew for complementary pairs of nucleotides. The hypothetical secondary structure of the 16S rRNA has also been reconstructed, obtaining a structural model similar to that of other insects.},
doi = {},
journal = {Gene},
number = 2,
volume = 376,
place = {United States},
year = {Thu Dec 01 00:00:00 EST 2005},
month = {Thu Dec 01 00:00:00 EST 2005}
}
  • ABSTRACT The green alga Scenedesmus obliquus is an emerging platform species for the industrial production of biofuels. Here, we report the draft assembly and annotation for the nuclear, plastid, and mitochondrial genomes of S. obliquus strain DOE0152z.
  • The big-headed turtle (Platysternon megacephalum) from east Asia is the sole living representative of a poorly-studied turtle lineage (Platysternidae). It has no close living relatives, and its phylogenetic position within turtles is one of the outstanding controversies in turtle systematics. Platysternon was traditionally considered to be close to snapping turtles (Chelydridae) based on some studies of its morphology and mitochondrial (mt) DNA, however, other studies of morphology and nuclear (nu) DNA do not support that hypothesis. We sequenced the complete mt genome of Platysternon and the nearly complete mt genomes of two other relevant turtles and compared them to turtlemore » mt genomes from the literature to form the largest molecular dataset used to date to address this issue. The resulting phylogeny robustly rejects the placement of Platysternon with Chelydridae, but instead shows that it is a member of the Testudinoidea, a diverse, nearly globally-distributed group that includes pond turtles and tortoises. We also discovered that Platysternon mtDNA has large-scale gene rearrangements and possesses two, nearly identical, control regions, features that distinguish it from all other studied turtles. Our study robustly determines the phylogenetic placement of Platysternon and provides a well-resolved outline of major turtle lineages, while demonstrating the significantly greater resolving power of comparing large amounts of mt sequence over that of short fragments. Earlier phylogenies placing Platysternon with chelydrids required a temporal gap in the fossil record that is now unnecessary. The duplicated control regions and gene rearrangements of the Platysternon mt DNA probably resulted from the duplication of part of the genome and then the subsequent loss of redundant genes. Although it is possible that having two control regions may provide some advantage, explaining why the control regions would be maintained while some of the duplicated genes were eroded, examples of this are rare. So far, duplicated control regions have been reported for mt genomes from just 12 clades of metazoans, including Platysternon.« less
  • Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisianmore » girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.« less
  • The complete nucleotide sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome has been determined. The lamprey genome is 16,201 bp in length and contains genes for 13 proteins, two rRNAs, 22 tRNAs and two major noncoding regions. The order and transcriptional polarities of protein-coding genes are basically identical to those of other chordate mtDNAs, demonstrating that the common mitochondrial gene organization of vertebrates was established at early stage of vertebrate evolution. The two major noncoding regions are separated by two tRNA genes. The first region probably functions as the control region because it contains distinctive conserved sequence blocks (CSB-IImore » and III) common to other vertebrate control regions. The central conserved domain observed in other vertebrate control regions is not found in the lamprey, suggesting that it is a recently evolved functional domain in vertebrates. Noncoding segments are not found in the expected position of the origin of replication for the second strand, suggesting either that one of the tRNA genes has a dual function or that the second noncoding region may function as the second-strand origin. The base composition at the wobble positions of fourfold degenerate codon families is highly biased toward thymine (32.7%). Values of GC- and AT-skew are typical of vertebrate mitochondrial genomes. 38 refs., 11 figs., 5 tabs.« less