skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX

Abstract

During the mid-l980's, Comision Federal de Electricidad (CFE) drilled a number of deep wells (M-200 series) at the Cerro Prieto geothermal field, Baja California, Mexico to investigate the continuation of the geothermal reservoir to the east of the Cerro Prieto-II and III production areas. The wells encountered permeability at depths ranging from 2,800 to 4,400 m but due to the reservoir depth and the relatively cold temperatures encountered in the upper 1,000 to 2,000 m of the wells, it was not possible to discharge some of the wells. The wells at Cerro Prieto are generally discharged by injecting compressed air below the water level using 2-3/8-inch tubing installed with either a crane or workover rig. The objective of this technique is to lift sufficient water out of the well to stimulate flow from the reservoir into the wellbore. However, in the case of the M-200 series wells, the temperatures in the upper 1,000 to 2,000 m are generally below 50 C and the heat loss to the formation is therefore significant. The impact of heat loss on the stimulation process was evaluated using both a numerical model of the reservoir/wellbore system and steady-state wellbore modeling. The results from the studymore » indicate that if a flow rate of at least 300 liters/minute can be sustained, the well can probably be successfully stimulated. This is consistent with the flow rates obtained during the successful stimulations of wells M-202 and M-203. If the flow rate is closer to 60 liters/minute, the heat loss is significant and it is unlikely that the well can be successfully discharged. These results are consistent with the unsuccessful discharge attempts in wells M-201 and M-205.« less

Authors:
; ; ;
Publication Date:
Research Org.:
GeothermEx, Inc., Richmond, CA; Comision Federal de Electricidad, Residencia de Estudios, Cerro Prieto, MX; Comision Federal de electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, MX
Sponsoring Org.:
USDOE
OSTI Identifier:
889354
Report Number(s):
SGP-TR-150-10
TRN: US200619%%789
Resource Type:
Conference
Resource Relation:
Conference: Proceedings, Twentieth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 24-26, 1995
Country of Publication:
United States
Language:
English
Subject:
15 GEOTHERMAL ENERGY; 02 PETROLEUM; CERRO PRIETO GEOTHERMAL FIELD; COMPRESSED AIR; FLOW RATE; GEOTHERMAL WELLS; PERMEABILITY; PRODUCTION; RESERVOIR ENGINEERING; SIMULATION; STIMULATION; WATER; Geothermal Legacy

Citation Formats

Menzies, Anthony J., Granados, Eduardo E., Puente, Hector Gutierrez, and Pierres, Luis Ortega. Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX. United States: N. p., 1995. Web.
Menzies, Anthony J., Granados, Eduardo E., Puente, Hector Gutierrez, & Pierres, Luis Ortega. Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX. United States.
Menzies, Anthony J., Granados, Eduardo E., Puente, Hector Gutierrez, and Pierres, Luis Ortega. Thu . "Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX". United States. doi:. https://www.osti.gov/servlets/purl/889354.
@article{osti_889354,
title = {Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX},
author = {Menzies, Anthony J. and Granados, Eduardo E. and Puente, Hector Gutierrez and Pierres, Luis Ortega},
abstractNote = {During the mid-l980's, Comision Federal de Electricidad (CFE) drilled a number of deep wells (M-200 series) at the Cerro Prieto geothermal field, Baja California, Mexico to investigate the continuation of the geothermal reservoir to the east of the Cerro Prieto-II and III production areas. The wells encountered permeability at depths ranging from 2,800 to 4,400 m but due to the reservoir depth and the relatively cold temperatures encountered in the upper 1,000 to 2,000 m of the wells, it was not possible to discharge some of the wells. The wells at Cerro Prieto are generally discharged by injecting compressed air below the water level using 2-3/8-inch tubing installed with either a crane or workover rig. The objective of this technique is to lift sufficient water out of the well to stimulate flow from the reservoir into the wellbore. However, in the case of the M-200 series wells, the temperatures in the upper 1,000 to 2,000 m are generally below 50 C and the heat loss to the formation is therefore significant. The impact of heat loss on the stimulation process was evaluated using both a numerical model of the reservoir/wellbore system and steady-state wellbore modeling. The results from the study indicate that if a flow rate of at least 300 liters/minute can be sustained, the well can probably be successfully stimulated. This is consistent with the flow rates obtained during the successful stimulations of wells M-202 and M-203. If the flow rate is closer to 60 liters/minute, the heat loss is significant and it is unlikely that the well can be successfully discharged. These results are consistent with the unsuccessful discharge attempts in wells M-201 and M-205.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jan 26 00:00:00 EST 1995},
month = {Thu Jan 26 00:00:00 EST 1995}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Interference effects of producing wells on an observation well in a geothermal field where the producing formations are porous, naturally fractured, and without much anisotropy can be calculated using the already established pressure-time-mass flow equations for slightly compressible fluids flowing in porous or pseudo-porous formations. When the results are correlated with pressure or water level decline in the observation well, a fundamentally important parameter of the reservoir is obtained. This parameter relates recharge and storativity of the reservoir and can be used in determining the optimum well spacing. The approach is illustrated with an example from Cerro Prieto Geothermal Field,more » Baja California, Mexico.« less
  • To aid in a paleoenvironmental and age reconstruction of the Cerro Prieto reservoir system, 59 samples of well cuttings were analyzed for microfossils. The cuttings were obtained at depths from 351 to 3495 m in 14 geothermal wells in the Cerro Prieto field, Baja California, Mexico. We found foraminifera in 6 samples, ostracodes in 19 samples, and nannoplankton as coccoliths in 24 samples. Other groups, such as molluscs, insects, fish skeletal parts, and plant material were occasionally present. Detailed interpretations are not possible at this time because of poor preservation of samples. This is primarily due to causes: dissolution bymore » geothermal fluids that reach 350{sup 0}C, and the extensive mixing of filled Cretaceous forms (reworked from the Colorado Plateau region) with Tertiary species during drilling. Further studies of ostracodes and foraminifera from colder portions of the wells are needed. The abundant and well-preserved ostracodes indicate marine to brackish water environments that correspond, in part, to lagoonal or estuarine facies. The presence of the mid-Tertiary (15-My-old) marine foraminifera, Cassigerinela chipolensis, in wells M-11 and M-38, 350 to 500 m deep, is perplexing. These are not laboratory contaminates and, as yet, have not been found in the drilling mud. If further studies confirm their presence at Cerro Prieto, established ideas about the opening of the Gulf of California and about Pacific Coast mid-Tertiary history will need to be rewritten.« less
  • From 1960 to the present, 85 wells with a total drilling length exceeding 160,000 m have been constructed at Cerro Prieto, a modest figure compared to an oil field. This activity took place in five stages, each characterized by changes and modifications required by various drilling and well-completion problems. Initially, the technical procedures followed were similar to those used in the oil industry. However, several problems emerged as a result of the relatively high temperatures found in the geothermal reservoir. The various problems that have been encountered can be considered to be related to drilling fluids, cements and cementing operations,more » lithology, geothermal fluid characteristics, and casings and their accessories. As the importance of high temperatures and the characteristics of the geothermal reservoir fluids were better understood, the criteria were modified to optimize well-completion operations, and satisfactory results have been achieved to date.« less
  • To aid in a paleonenvironmental and age reconstruction of the Cerro Prieto reservoir system, 59 samples of well cuttings were analyzed for microfossils. The cuttings were obtained at depths from 351 to 3495m in 14 geothermal wells in the Cerro Prieto field, Baja California, Mexico. Foraminifera was found in 6 samples, ostracodes in 19 samples and mannoplankton as coccoliths in 24 samples. Other groups, such as molluscus, insects, fish skeletal parts, and plant material were occasionally present. Detailed interpretations at this time cannot be made because of poor preservation of samples. This is primarily due to causes: dissolution by geothermalmore » fluids that reach 350/sup 0/C, and the extensive mixing of filled Cretaceous forms (reworked from the Colorado Plateau region) with Tertiary species during drilling. Further studies of ostracodes and foraminifera from colder portions of the wells are needed. The abundant and well-preserved ostracodes indicate marine to backish water inviroments that correspond in part, to lagoonal or estuarine facies. The presence of the mid-Tertiary (15-m.y.-old) marine foraminifera, Cassigerinela chipolensis, in wells M-11 and M-38, 350 to 500m deep, is perplexing. These are not laboratory contaminates and, as yet have not been found in the drilling mud. If further studies confirm their presence at Cerro Prieto, established ideas about the opening of the Gulf of California and about Pacific Coast mid-Tertiary history will need to be rewritten.« less
  • Agricultural development in the Mexicali Valley and in the high cost of electric power required to operate the irrigation wells in the Valley prompted the Mexican government to investigate the possibility of taking advantage of thermal manifestations in the area located 28 km southeast of the city of Mexicali to generate electric power and thereby partially decrease the flight of foreign exchange. In 1958, a geologic study of the southern and southeastern zone of Mexicali was conducted to identify the possibilities of tapping geothermal resources. The purpose of this study was to gain knowledge of the geologic conditions in thismore » area and, if possible, to establish the location of exploratory and production wells and, on the basis of the results of the former, examine the geologic history in order to gain knowledge and understanding of the structural control of the steam. On the basis of this study, it was recommended that 3 exploratory wells should be drilled in order to locate weak zones that would easily allow for steam flow.« less