skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

Abstract

Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanismsmore » by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.« less

Authors:
Publication Date:
Research Org.:
The Regents of the University of California, San Diego, La Jolla, CA
Sponsoring Org.:
USDOE
OSTI Identifier:
887459
Report Number(s):
DOE/ER/20148-01
TRN: US201010%%418
DOE Contract Number:
FG03-94ER20148
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; APERTURES; ARABIDOPSIS; BIOMASS; CALCIUM; CARBON; CROPS; DIFFUSION; DROUGHTS; EPIDERMIS; HYPOTHESIS; MEMBRANES; OPTIMIZATION; PHYSIOLOGY; PLANT GROWTH; PLASMA; PRODUCTION; REGULATIONS; WATER

Citation Formats

Schroeder, Julian I. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells. United States: N. p., 2007. Web. doi:10.2172/887459.
Schroeder, Julian I. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells. United States. doi:10.2172/887459.
Schroeder, Julian I. Wed . "Physiology and Regulation of Calcium Channels in Stomatal Guard Cells". United States. doi:10.2172/887459. https://www.osti.gov/servlets/purl/887459.
@article{osti_887459,
title = {Physiology and Regulation of Calcium Channels in Stomatal Guard Cells},
author = {Schroeder, Julian I.},
abstractNote = {Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.},
doi = {10.2172/887459},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed May 02 00:00:00 EDT 2007},
month = {Wed May 02 00:00:00 EDT 2007}
}

Technical Report:

Save / Share:
  • Plants regulate water loss and CO{sub 2} gain by modulating the aperture sizes of stomata that penetrate the epidermis. Aperture size itself is increased by osmolyte accumulation and consequent turgor increase in the pair of guard cells that flank each stoma. Guard-cell phosphoenolpyruvate carboxylase, which catalyzes the regulated step leading to malate synthesis, is crucial for charge and pH maintenance during osmolyte accumulation. Regulation of this cytosolic enzyme by effectors is well documented, but additional regulation by posttranslational modification is predicted by the alteration of PEPC kinetics during stomatal opening. In this study, the authors have investigated whether this alterationmore » is associated with the phosphorylation status of this enzyme. Using sonicated epidermal peels (isolated guard cells) pre-loaded with {sub 32}PO{sub 4}, the authors induced stomatal opening and guard-cell malate accumulation by incubation with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with the FC antagonist, 10 {micro}M abscisic acid (ABA). The phosphorylation status of PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. PEPC was phosphorylated when stomata were stimulated to open, and phosphorylation was lessened by incubation with ABA.« less
  • At various times after pulse labeling Vicia faba L. leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents whereas those from rinsed peels contained only cytoplastic contents. Sucrose specific radioactivity peaked in palisade cells, 111 GBq{center_dot}mol{sup {minus}1}, at 20 min. In contrast, the {sup 14}C content and sucrose specific radioactivity were very low in guard cells for 20 min, implying little CO{sub 2} incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum sucrose specific radioactivity and amore » high sucrose influx rate. These and other comparisons implied the presence of (a) multiple sucrose pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived sucrose in guard-cell walls sufficient to diminish stomatal opening by {approximately} 4 {micro}m. Factors expected to enhance sucrose accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic sucrose concentration, which is elevated when mesophyll-sucrose efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal-aperture size by this previously unrecognized mechanism.« less
  • A primary objective of modern agriculture and biofuel production is to utilize arable land to its fullest potential. However, sub-optimal growing conditions—arising from abiotic stresses such as drought, soil salinity, low humidity, cold, and heat—reduce crop yield and quality. Optimal yield under both stressed and non-stressed conditions requires the plant to activate coping mechanisms at a level commensurate with the severity of the drought stress. The osmotic sensors and associated regulatory mechanisms that initiate drought- and salt-tolerance responses in plants are largely unknown. This research aimed to identify and characterize these initial sensory components.
  • Focused on the second of 2 hypotheses that were proposed for testing that transpiration rate determines the extent to which suc accumulates in the GC wall providing a mechanism for regulating stomatal aperture size.
  • To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionallymore » express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn homeostasis in post-Golgi compartments are critical for secretory activities. Moreover, perturbation of the secretory machinery limits growth possibly by upsetting the synthesis, processing and assembly of cell wall components. Analyses of whole genome transcriptome of pollen shows that a subset of Ca pump genes are developmentally regulated. Each ECA Ca pump is localized to distinct endomembrane compartments and regulate Ca and Mn homeostasis required for optimal growth and for tolerance to high Mn stress. Ca and Mn levels within endomembrane lumen appear to be critical for activities of the secretory machinery including post-Golgi compartments that coordinate membrane traffic and sorting of materials to the vacuole and the cell wall. Significance: Thus sorting of Ca/Mn by ECA pumps in endomembranes is critical for membrane trafficking pattern which serves as a central coordinator of plant growth, development and adaptation to abiotic and biotic stress.« less