skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Combined Power Generation and Carbon Sequestration Using Direct FuelCell

Abstract

The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine itsmore » effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.« less

Authors:
Publication Date:
Research Org.:
FuelCell Energy, Inc.
Sponsoring Org.:
USDOE
OSTI Identifier:
886943
DOE Contract Number:  
FC26-04NT42206
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
03 NATURAL GAS; 29 ENERGY PLANNING, POLICY AND ECONOMY; 30 DIRECT ENERGY CONVERSION; CARBON; CARBON DIOXIDE; CARBON SEQUESTRATION; ELECTRIC POWER; FLUE GAS; FOSSIL FUELS; FUEL CELLS; GREENHOUSE GASES; NATURAL GAS; POWER GENERATION; POWER PLANTS; SYSTEMS ANALYSIS

Citation Formats

Hossein Ghezel-Ayagh. Combined Power Generation and Carbon Sequestration Using Direct FuelCell. United States: N. p., 2006. Web. doi:10.2172/886943.
Hossein Ghezel-Ayagh. Combined Power Generation and Carbon Sequestration Using Direct FuelCell. United States. doi:10.2172/886943.
Hossein Ghezel-Ayagh. Wed . "Combined Power Generation and Carbon Sequestration Using Direct FuelCell". United States. doi:10.2172/886943. https://www.osti.gov/servlets/purl/886943.
@article{osti_886943,
title = {Combined Power Generation and Carbon Sequestration Using Direct FuelCell},
author = {Hossein Ghezel-Ayagh},
abstractNote = {The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.},
doi = {10.2172/886943},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2006},
month = {Wed Mar 01 00:00:00 EST 2006}
}

Technical Report:

Save / Share: