skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sensor for Individual Burner Control of Firing Rate, Fuel-Air Ratio, and Coal Fineness Correlation

Abstract

To minimize program cost, additional testing was performed in concert with EPRI-funded testing at the Coal Flow Test Facility in late July. The major focus of this effort was noise reduction. As it turned out, the main source of the noise proved to be related to electrical grounding issues and the adjustments needed to address these problems took most of the test period. Once those changes were in place, a very limited quantity of high quality data was obtained and an excellent correlation between the dynamic signature and coal flow was obtained. Additional data were then collected during August. Unfortunately, the sensor signal for the August data collection proved to be extremely weak. Therefore, Airflow Sciences will collect additional laboratory data in October before proceeding with the collection of field data. This will allow the calibration to be expanded to include a wider range of flow conditions and improve the potential applicability to data to be collected at the coal plants.

Authors:
; ;
Publication Date:
Research Org.:
Foster-Miller, Inc.
Sponsoring Org.:
USDOE
OSTI Identifier:
886734
DOE Contract Number:
FC26-03NT41846
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; BURNERS; CALIBRATION; COAL; FUEL-AIR RATIO; TESTING

Citation Formats

Wayne Hill, Roger Demler, and Robert G. Mudry. Sensor for Individual Burner Control of Firing Rate, Fuel-Air Ratio, and Coal Fineness Correlation. United States: N. p., 2006. Web. doi:10.2172/886734.
Wayne Hill, Roger Demler, & Robert G. Mudry. Sensor for Individual Burner Control of Firing Rate, Fuel-Air Ratio, and Coal Fineness Correlation. United States. doi:10.2172/886734.
Wayne Hill, Roger Demler, and Robert G. Mudry. Wed . "Sensor for Individual Burner Control of Firing Rate, Fuel-Air Ratio, and Coal Fineness Correlation". United States. doi:10.2172/886734. https://www.osti.gov/servlets/purl/886734.
@article{osti_886734,
title = {Sensor for Individual Burner Control of Firing Rate, Fuel-Air Ratio, and Coal Fineness Correlation},
author = {Wayne Hill and Roger Demler and Robert G. Mudry},
abstractNote = {To minimize program cost, additional testing was performed in concert with EPRI-funded testing at the Coal Flow Test Facility in late July. The major focus of this effort was noise reduction. As it turned out, the main source of the noise proved to be related to electrical grounding issues and the adjustments needed to address these problems took most of the test period. Once those changes were in place, a very limited quantity of high quality data was obtained and an excellent correlation between the dynamic signature and coal flow was obtained. Additional data were then collected during August. Unfortunately, the sensor signal for the August data collection proved to be extremely weak. Therefore, Airflow Sciences will collect additional laboratory data in October before proceeding with the collection of field data. This will allow the calibration to be expanded to include a wider range of flow conditions and improve the potential applicability to data to be collected at the coal plants.},
doi = {10.2172/886734},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2006},
month = {Wed Mar 01 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • The project's overall objective is to development a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of themore » coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the non-specific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to pulverized coal burners. The benefits sought through the use of this system include improvements to a plant's feed utilization rate as well as the overall efficiency of a pulverized coal combustion system.« less
  • Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resultedmore » in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run of pipe. In fact, an optimal signal is obtained near a pipe elbow. This is fortuitous, as bends are often more accessible on pipes in a power plant than straight sections. In contrast to measurement systems that rely on the uniformity of the air and coal profile, the accuracy of the system under development will not compromised by varying levels of flow uniformity.« less
  • The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of themore » coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the nonspecific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to pulverized coal burners. The benefits sought through the use of this system include improvements to a plant's feed utilization rate as well as the overall efficiency of a pulverized coal combustion system.« less
  • The project's overall objective is to develop a commercially viable sensing system to infer the flow rate and fineness of pulverized coal flows using the dynamic signature from a pipe-mounted accelerometer. The preliminary calibration data for this effort will be obtained using a Coal Flow Test Facility built and operated by our subcontractor, Airflow Sciences Corporation, in support of an EPRI program. Airflow Sciences encountered significant difficulty getting the system up and running, with the final hurdles related to the system controls. These problems were resolved in this reporting period, so that the facility is ready for testing. Shakedown testingmore » with our instrumentation package began late in the reporting period. Preliminary analysis of the resulting data indicates that there are problems with the instrumentation and/or test rig. Even with no flow passing through the test section, a power spectrum of the data shows strong frequency ''lines''. The data should be free of such behaviors, so the instrumentation must be recording behaviors that are unrelated to the flow. This issue must be resolved before calibration data are collected. A preliminary effort to debug the problem through long-distance consultation between Foster-Miller and Airflow Sciences personnel at the end of the reporting period did not discover the source of the problem. Consequently, a Foster-Miller engineer will visit the test facility early in the next reporting period. Assuming this effort is successful, preliminary testing and analysis should be completed in the next reporting period. Because of slack in the program schedule, there should be no net effect on the program scope, cost, or schedule.« less
  • Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these datamore » shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.« less