skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass

Abstract

Fiberglass made by Owens Corning is being used in noise reduction of automobile exhaust system. Specifically, the glass fibers are packed inside the muffler to achieve the desired acoustic effect. A secondary benefit of the fibers is to serve as a thermal insulation. Because of this insulating property, the glass fibers can serve to reduce the temperature of the muffler shell. This in turn reduces the need for heat shields around mufflers and reduces the amount of exterior temperature accelerated corrosion of the muffler shell, especially in the winter ''salt belts'' where large amounts of salt are placed on highways to minimize the safety impact of snow and ice. In addition, for some applications the use of the fiberglass could allow the use of lighter weight carbon based polymer composite materials in place of steel for muffler shells. However, in order to properly design exhaust systems without heat shields or to take advantage of new materials, the thermal conductivity of the fiberglass material at operating temperatures (for some applications above 750 C) must be known. We selected two types of Owens Corning glass fibers, 17 {micro}m and 24 {micro}m in diameter, for this study. There are some room temperature thermalmore » conductivity data for the fiberglass, but high temperature data are not available. Based on the thermal radiation model, thermal conductivity should increase rapidly at high temperature, providing less thermal insulation. In addition, thermal conductivity depends on packing density of the glass fibers. We will study the effect of packing density on thermal conductivity. Another issue is that the glass fiber conducts heat better along the fiber, while the conduction across the fibers is poor, because thermal conduction from one fiber to another has to go through an interface with thermal resistance. In fiberglass, most fibers are not in good contact with the surrounding fibers, thus, most heat transfer is dependent on the thermal radiation effect. Among the many methods of measuring thermal conductivity, only a few can be used for glass fibers. The traditional heat flow meter is used in testing thermal insulations near room temperature. At higher temperatures this method cannot be used due to material and instrument limitations. Our plan is to use a transient plane source (TPS) method to measure thermal conductivity directly. The advantage of the TPS method is that measurements can be taken at over 700 C, and covers the temperature of the automobile exhausts. The following is a report for the G-Plus project conducted at ORNL to apply the TPS method to characterizing the thermal conductivity of two types of fiberglass and also the effect of packing density.« less

Authors:
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
885664
Report Number(s):
ORNL/TM-2003/98
TRN: US200617%%117
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 36 MATERIALS SCIENCE; ACOUSTICS; AUTOMOBILES; COMPOSITE MATERIALS; EXHAUST SYSTEMS; FIBERGLASS; HEAT FLUX; HEAT TRANSFER; POLYMERS; THERMAL CONDUCTION; THERMAL CONDUCTIVITY; THERMAL INSULATION; THERMAL RADIATION

Citation Formats

Wang, H. G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass. United States: N. p., 2003. Web. doi:10.2172/885664.
Wang, H. G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass. United States. doi:10.2172/885664.
Wang, H. Tue . "G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass". United States. doi:10.2172/885664. https://www.osti.gov/servlets/purl/885664.
@article{osti_885664,
title = {G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass},
author = {Wang, H},
abstractNote = {Fiberglass made by Owens Corning is being used in noise reduction of automobile exhaust system. Specifically, the glass fibers are packed inside the muffler to achieve the desired acoustic effect. A secondary benefit of the fibers is to serve as a thermal insulation. Because of this insulating property, the glass fibers can serve to reduce the temperature of the muffler shell. This in turn reduces the need for heat shields around mufflers and reduces the amount of exterior temperature accelerated corrosion of the muffler shell, especially in the winter ''salt belts'' where large amounts of salt are placed on highways to minimize the safety impact of snow and ice. In addition, for some applications the use of the fiberglass could allow the use of lighter weight carbon based polymer composite materials in place of steel for muffler shells. However, in order to properly design exhaust systems without heat shields or to take advantage of new materials, the thermal conductivity of the fiberglass material at operating temperatures (for some applications above 750 C) must be known. We selected two types of Owens Corning glass fibers, 17 {micro}m and 24 {micro}m in diameter, for this study. There are some room temperature thermal conductivity data for the fiberglass, but high temperature data are not available. Based on the thermal radiation model, thermal conductivity should increase rapidly at high temperature, providing less thermal insulation. In addition, thermal conductivity depends on packing density of the glass fibers. We will study the effect of packing density on thermal conductivity. Another issue is that the glass fiber conducts heat better along the fiber, while the conduction across the fibers is poor, because thermal conduction from one fiber to another has to go through an interface with thermal resistance. In fiberglass, most fibers are not in good contact with the surrounding fibers, thus, most heat transfer is dependent on the thermal radiation effect. Among the many methods of measuring thermal conductivity, only a few can be used for glass fibers. The traditional heat flow meter is used in testing thermal insulations near room temperature. At higher temperatures this method cannot be used due to material and instrument limitations. Our plan is to use a transient plane source (TPS) method to measure thermal conductivity directly. The advantage of the TPS method is that measurements can be taken at over 700 C, and covers the temperature of the automobile exhausts. The following is a report for the G-Plus project conducted at ORNL to apply the TPS method to characterizing the thermal conductivity of two types of fiberglass and also the effect of packing density.},
doi = {10.2172/885664},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2003},
month = {4}
}

Technical Report:

Save / Share: