skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plant Design for the Production of DUAGG

Abstract

The cost of producing DUAGG is an important consideration for any interested private firm in determining whether DUCRETE is economically viable as a material of construction in next-generation spent nuclear fuel casks. This study analyzed this project as if it was a stand-alone project. The capital cost includes engineering design, equipment costs and installation, start up, and management; the study is not intended to be a life-cycle cost analysis. The costs estimated by this study are shown in Table ES.1, and the conclusions of this study are listed in Table ES.2. The development of DUAGG and DUCRETE is a major thrust of the Depleted Uranium Uses Research and Development Project. An obvious use of depleted uranium is as a shielding material (e.g., DUCRETE). DUCRETE is made by replacing the conventional stone aggregate in concrete with DUAGG. One objective of this project is to bring the development of DUCRETE to a point at which a demonstrated basis exists for its commercial deployment. The estimation of the costs to manufacture DUAGG is an important part of this effort. Paul Lessing and William Quapp developed DUAGG and DUCRETE as part of an Idaho National Engineering and Environmental Laboratory (INEEL) program to find beneficialmore » uses for depleted uranium (DU). Subsequently, this technology was licensed to Teton Technologies, Inc. The DUAGG process mixes DUO{sub 2} with sintering materials and additives to form pressed briquettes. These briquettes are sintered at 1300 C, and the very dense sintered briquettes are then crushed and classified into gap-graded size fractions. The graded DUAGG is then ready to be used to make high-strength heavy DUCRETE. The DUCRETE shielding will be placed into an annular steel cask-shell mold, which has internal steel reinforcing bars. The objectives of this study are to (1) use previous DUAGG process developments to design a plant that will produce DUAGG at a baseline rate, (2) determine the size of the equipment required to meet the DUAGG production scale, (3) estimate the facility's capital and operating costs, and (4) perform a parametric sensitivity analysis on those elements of cost that most affect the total operating expenses. Because the study does not include preoperational, decontamination, decommissioning, and closure costs, it cannot be considered a complete life-cycle cost analysis. However, the purpose of this analysis is to establish the potential viability of the DUAGG process as a private commercial venture to meet a market demand for advanced spent nuclear fuel (SNF) storage and transport casks.« less

Authors:
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
885643
Report Number(s):
ORNL/TM-2002/274
TRN: US0604067
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; CAPITALIZED COST; DECONTAMINATION; DEPLETED URANIUM; DESIGN; LIFE-CYCLE COST; NUCLEAR FUELS; OPERATING COST; PRODUCTION; SENSITIVITY ANALYSIS; SHIELDING MATERIALS; SPENT FUELS

Citation Formats

Ferrada, J J. Plant Design for the Production of DUAGG. United States: N. p., 2003. Web. doi:10.2172/885643.
Ferrada, J J. Plant Design for the Production of DUAGG. United States. doi:10.2172/885643.
Ferrada, J J. Tue . "Plant Design for the Production of DUAGG". United States. doi:10.2172/885643. https://www.osti.gov/servlets/purl/885643.
@article{osti_885643,
title = {Plant Design for the Production of DUAGG},
author = {Ferrada, J J},
abstractNote = {The cost of producing DUAGG is an important consideration for any interested private firm in determining whether DUCRETE is economically viable as a material of construction in next-generation spent nuclear fuel casks. This study analyzed this project as if it was a stand-alone project. The capital cost includes engineering design, equipment costs and installation, start up, and management; the study is not intended to be a life-cycle cost analysis. The costs estimated by this study are shown in Table ES.1, and the conclusions of this study are listed in Table ES.2. The development of DUAGG and DUCRETE is a major thrust of the Depleted Uranium Uses Research and Development Project. An obvious use of depleted uranium is as a shielding material (e.g., DUCRETE). DUCRETE is made by replacing the conventional stone aggregate in concrete with DUAGG. One objective of this project is to bring the development of DUCRETE to a point at which a demonstrated basis exists for its commercial deployment. The estimation of the costs to manufacture DUAGG is an important part of this effort. Paul Lessing and William Quapp developed DUAGG and DUCRETE as part of an Idaho National Engineering and Environmental Laboratory (INEEL) program to find beneficial uses for depleted uranium (DU). Subsequently, this technology was licensed to Teton Technologies, Inc. The DUAGG process mixes DUO{sub 2} with sintering materials and additives to form pressed briquettes. These briquettes are sintered at 1300 C, and the very dense sintered briquettes are then crushed and classified into gap-graded size fractions. The graded DUAGG is then ready to be used to make high-strength heavy DUCRETE. The DUCRETE shielding will be placed into an annular steel cask-shell mold, which has internal steel reinforcing bars. The objectives of this study are to (1) use previous DUAGG process developments to design a plant that will produce DUAGG at a baseline rate, (2) determine the size of the equipment required to meet the DUAGG production scale, (3) estimate the facility's capital and operating costs, and (4) perform a parametric sensitivity analysis on those elements of cost that most affect the total operating expenses. Because the study does not include preoperational, decontamination, decommissioning, and closure costs, it cannot be considered a complete life-cycle cost analysis. However, the purpose of this analysis is to establish the potential viability of the DUAGG process as a private commercial venture to meet a market demand for advanced spent nuclear fuel (SNF) storage and transport casks.},
doi = {10.2172/885643},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2003},
month = {2}
}

Technical Report:

Save / Share: