skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL

Abstract

The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. the Pena Blanca Natural Analogue Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following characteristics as compared to the Yucca Mountain repository site. (1) Analogous source: UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geologic setting: fractured, welded, and altered rhyolitic ash flow tuffs overlying carbonate rocks; (3) Analogous climate: Semiarid to arid; (4) Analogous geochemistry: Oxidizing conditions; and (5) Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table. The Nopal I deposit is approximately 8 {+-} 0.5 million years old and has been exposed to oxidizing conditions during themore » last 3.2 to 3.4 million years. The Pena Blanca Natural Analogue Model considers that the uranium oxide and uranium silicates in the ore deposit were originally analogous to uranium-oxide spent nuclear fuel. The Pena Blanca site has been characterized using field and laboratory investigations of its fault and fracture distribution, mineralogy, fracture fillings, seepage into the mine adits, regional hydrology, and mineralization that shows the extent of radionuclide migration. Three boreholes were drilled at the Nopal I mine site in 2003 and these boreholes have provided samples for lithologic characterization, water-level measurements, and water samples for laboratory analysis of the saturated zone water chemistry. The results of the field investigations and laboratory analyses of rock and water samples collected at Nopal I are used to calibrate the Pena Blanca Natural Analogue Model.« less

Authors:
;
Publication Date:
Research Org.:
Yucca Mountain Project, Las Vegas, Nevada
Sponsoring Org.:
USDOE
OSTI Identifier:
884903
Report Number(s):
NA
MOL.20060404.0034, DC#47356; TRN: US0603712
DOE Contract Number:
NA
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; CARBONATE ROCKS; GEOLOGIC FORMATIONS; NATURAL ANALOGUE; NUCLEAR FUELS; PERFORMANCE; RADIOISOTOPES; RADIONUCLIDE MIGRATION; URANIUM DEPOSITS; URANIUM MINES; URANIUM ORES; URANIUM OXIDES; URANIUM SILICATES; WATER CHEMISTRY; WATER TABLES; YUCCA MOUNTAIN

Citation Formats

G.J. Saulnier Jr, and W. Statham. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL. United States: N. p., 2006. Web. doi:10.2172/884903.
G.J. Saulnier Jr, & W. Statham. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL. United States. doi:10.2172/884903.
G.J. Saulnier Jr, and W. Statham. Fri . "THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL". United States. doi:10.2172/884903. https://www.osti.gov/servlets/purl/884903.
@article{osti_884903,
title = {THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL},
author = {G.J. Saulnier Jr and W. Statham},
abstractNote = {The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. the Pena Blanca Natural Analogue Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following characteristics as compared to the Yucca Mountain repository site. (1) Analogous source: UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geologic setting: fractured, welded, and altered rhyolitic ash flow tuffs overlying carbonate rocks; (3) Analogous climate: Semiarid to arid; (4) Analogous geochemistry: Oxidizing conditions; and (5) Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table. The Nopal I deposit is approximately 8 {+-} 0.5 million years old and has been exposed to oxidizing conditions during the last 3.2 to 3.4 million years. The Pena Blanca Natural Analogue Model considers that the uranium oxide and uranium silicates in the ore deposit were originally analogous to uranium-oxide spent nuclear fuel. The Pena Blanca site has been characterized using field and laboratory investigations of its fault and fracture distribution, mineralogy, fracture fillings, seepage into the mine adits, regional hydrology, and mineralization that shows the extent of radionuclide migration. Three boreholes were drilled at the Nopal I mine site in 2003 and these boreholes have provided samples for lithologic characterization, water-level measurements, and water samples for laboratory analysis of the saturated zone water chemistry. The results of the field investigations and laboratory analyses of rock and water samples collected at Nopal I are used to calibrate the Pena Blanca Natural Analogue Model.},
doi = {10.2172/884903},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 10 00:00:00 EST 2006},
month = {Fri Mar 10 00:00:00 EST 2006}
}

Technical Report:

Save / Share: