skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Space Shielding Materials for Prometheus Application

Abstract

At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower massmore » than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and mitigate the risks in LiH development for a project with an aggressive schedule like JIMO, some background or advanced development effort for LiH should be considered for future space reactor projects.« less

Authors:
Publication Date:
Research Org.:
Knolls Atomic Power Laboratory (KAPL), Niskayuna, NY
Sponsoring Org.:
USDOE
OSTI Identifier:
883693
Report Number(s):
MDO-723-0049
TRN: US0603424
DOE Contract Number:
DE-AC12-00SN39357
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING; 22 GENERAL STUDIES OF NUCLEAR REACTORS; BERYLLIUM; BORON CARBIDES; CASTING; CHEMISTRY; CONTAINMENT; CONTAMINATION; CORROSION; IRRADIATION; LITHIUM HYDRIDES; NEUTRONS; SHIELDING MATERIALS; SHIELDS; SWELLING; TUNGSTEN; WATER; NESDPS Office of Nuclear Energy Space and Defense Power Systems; NRPCT

Citation Formats

R. Lewis. Space Shielding Materials for Prometheus Application. United States: N. p., 2006. Web. doi:10.2172/883693.
R. Lewis. Space Shielding Materials for Prometheus Application. United States. doi:10.2172/883693.
R. Lewis. 2006. "Space Shielding Materials for Prometheus Application". United States. doi:10.2172/883693. https://www.osti.gov/servlets/purl/883693.
@article{osti_883693,
title = {Space Shielding Materials for Prometheus Application},
author = {R. Lewis},
abstractNote = {At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and mitigate the risks in LiH development for a project with an aggressive schedule like JIMO, some background or advanced development effort for LiH should be considered for future space reactor projects.},
doi = {10.2172/883693},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2006,
month = 1
}

Technical Report:

Save / Share:
  • The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relativemore » to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be-bearing materials require significant controls, handling of clean, finished products requires only modest controls. Neither material was initially considered to be viable as a structural material, however, based on improved understanding of its unirradiated properties, Be should be evaluated due to having potentially acceptable structural properties in the unirradiated condition, i. e., during launch, when loads might be most limiting. All three of the alternative materials are non-hazardous, and thus do not engender the ES&H concerns associated with use of Be or BeO. Aluminum oxide is a widely available ceramic material with well characterized physical properties and well developed processing practices. Although the densest (3.97 g/cm{sup 3} versus Be: 1.85, BeO: 3.01, MgO: 3.58, and MgAl{sub 2}O{sub 4}: 3.60, all theoretical density), and therefore the heaviest, of all the materials considered for this application, its ease of fabrication, mechanical properties, availability and neutronic characteristics warrant its evaluation. Similarly, MgO is widely used in the refractory materials industry and has a large established manufacturing base while being lighter than Al{sub 2}O{sub 3}. Most of the commercially available MgO products incorporate additives or a second phase to avoid the formation of Mg(OH){sub 2} due to spontaneous reaction with ambient humidity. The hygroscopicity of MgO makes it a more difficult material to work with than Al{sub 2}O{sub 3} or MgAl{sub 2}O{sub 4}. Magnesium aluminate spinel, although not as widely available as either Al{sub 2}O{sub 3} or MgO, has the advantage of a density almost as low as MgO without being hygroscopic, and shares comparable neutronic performance characteristics in the reflector application.« less
  • This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.
  • Ni-base alloys were considered for the Prometheus space reactor pressure vessel with operational parameters of {approx}900 K for 15 years and fluences up to 160 x 10{sup 20} n/cm{sup 2} (E > 0.1 MeV). This paper reviews the effects of irradiation on the behavior of Ni-base alloys and shows that radiation-induced swelling and creep are minor considerations compared to significant embrittlement with neutron exposure. While the mechanism responsible for radiation-induced embrittlement is not fully understood, it is likely a combination of helium embrittlement and solute segregation that can be highly dependent on the alloy composition and exposure conditions. Transmutation calculationsmore » show that detrimental helium levels would be expected at the end of life for the inner safety rod vessel (thimble) and possibly the outer pressure vessel, primarily from high energy (E > 1 MeV) n,{alpha} reactions with {sup 58}Ni. Helium from {sup 10}B is significant only for the outer vessel due to the proximity of the outer vessel to the BeO control elements. Recommendations for further assessments of the material behavior and methods to minimize the effects of radiation damage through alloy design are provided.« less
  • The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less
  • Ni-base alloys were considered for the Prometheus space reactor pressure vessel with operational parameters of {approx}900 K for 15 years and fluences up to 160 x 10{sup 20} n/cm{sup 2} (E > 0.1 MeV). This paper reviews the effects of irradiation on the behavior of Ni-base alloys and shows that radiation-induced swelling and creep are minor considerations compared to significant embrittlement with neutron ,exposure. While the mechanism responsible for radiation-induced embrittlement is not fully understood, it is likely a combination of helium embrittlement and solute segregation that can be highly dependent on the alloy composition and exposure conditions. Transmutation calculationsmore » show that detrimental helium levels would be expected at the end of life for the inner safety rod vessel (thimble) and possibly the outer pressure vessel, primarily from high energy (E > 1 MeV) n,{alpha} reactions with {sup 58}Ni. Helium from {sup 10}B is significant only for the outer vessel due to the proximity of the outer vessel to the Be0 control elements. Recommendations for further assessments of the material behavior and methods to minimize the effects of radiation damage through alloy design are provided.« less