skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL

Abstract

The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. The Pena Blanca Natural Analogue Performance Assessment Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash-flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following analogous characteristics as compared to the Yucca Mountain repository site: (1) Analogous source--UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geology--(i.e. fractured, welded, and altered rhyolitic ash-flow tuffs); (3) Analogous climate--Semiarid to arid; (4) Analogous setting--Volcanic tuffs overlie carbonate rocks; and (5) Analogous geochemistry--Oxidizing conditions Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table.

Authors:
Publication Date:
Research Org.:
Yucca Mountain Project, Las Vegas, Nevada
Sponsoring Org.:
USDOE
OSTI Identifier:
883056
Resource Type:
Conference
Resource Relation:
Conference: HIGH-LEVEL NUCLEAR WASTE CONFERENCE, LAS VEGAS, NV, APRIL 16, 2006
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; CARBONATE ROCKS; GEOLOGIC FORMATIONS; MEXICO; NATURAL ANALOGUE; NUCLEAR FUELS; PERFORMANCE; RADIOACTIVE WASTES; RADIOISOTOPES; TRANSPORT; URANIUM DEPOSITS; URANIUM MINES; URANIUM ORES; WATER TABLES; YUCCA MOUNTAIN

Citation Formats

G. Saulnier and W. Statham. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL. United States: N. p., 2006. Web.
G. Saulnier and W. Statham. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL. United States.
G. Saulnier and W. Statham. Sun . "THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL". United States. doi:. https://www.osti.gov/servlets/purl/883056.
@article{osti_883056,
title = {THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL},
author = {G. Saulnier and W. Statham},
abstractNote = {The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. The Pena Blanca Natural Analogue Performance Assessment Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash-flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following analogous characteristics as compared to the Yucca Mountain repository site: (1) Analogous source--UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geology--(i.e. fractured, welded, and altered rhyolitic ash-flow tuffs); (3) Analogous climate--Semiarid to arid; (4) Analogous setting--Volcanic tuffs overlie carbonate rocks; and (5) Analogous geochemistry--Oxidizing conditions Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Apr 16 00:00:00 EDT 2006},
month = {Sun Apr 16 00:00:00 EDT 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. the Pena Blanca Natural Analogue Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formationsmore » at the Yucca Mountain site. The Nopal I mine site has the following characteristics as compared to the Yucca Mountain repository site. (1) Analogous source: UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geologic setting: fractured, welded, and altered rhyolitic ash flow tuffs overlying carbonate rocks; (3) Analogous climate: Semiarid to arid; (4) Analogous geochemistry: Oxidizing conditions; and (5) Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table. The Nopal I deposit is approximately 8 {+-} 0.5 million years old and has been exposed to oxidizing conditions during the last 3.2 to 3.4 million years. The Pena Blanca Natural Analogue Model considers that the uranium oxide and uranium silicates in the ore deposit were originally analogous to uranium-oxide spent nuclear fuel. The Pena Blanca site has been characterized using field and laboratory investigations of its fault and fracture distribution, mineralogy, fracture fillings, seepage into the mine adits, regional hydrology, and mineralization that shows the extent of radionuclide migration. Three boreholes were drilled at the Nopal I mine site in 2003 and these boreholes have provided samples for lithologic characterization, water-level measurements, and water samples for laboratory analysis of the saturated zone water chemistry. The results of the field investigations and laboratory analyses of rock and water samples collected at Nopal I are used to calibrate the Pena Blanca Natural Analogue Model.« less
  • No abstract prepared.
  • The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill cores. Data from site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.
  • The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill core. Datafrom site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.
  • The purpose of this study was to evaluate radionuclide migration from a uranium-mineralized breccia pipe. The site provides an excellent opportunity to evaluate radionuclide mobility in a geochemical environment similar to that around the proposed high-level waste repository at Yucca Mountain, Nevada. Samples represent fracture-infillings from both within and outside the breccia pipe. Mineral assemblages within the fractures include (1) pure kaolinite, (2) a mixture of iron-oxyhydroxides (goethite and hematite) with associated alunite and jarosite, which the authors refer to as the Fe-mineral assemblage, and (3) carbonates. Uranophane, weeksite, soddyite, and boltwoodite are associated with samples from within the brecciamore » zone. The authors obtain radionuclide activities from gamma-ray rather than alpha spectroscopy, and the methodology for these measurements is presented in detail. Plots of {sup 230}Th/{sup 238}U vs. {sup 226}Ra/{sup 230}Th show three distinct mobility trends. (1) The majority of the Fe-mineral samples from within the breccia pipe yield values between 1.0 and 1.1 for both ratios, (2) Fe-mineral samples from outside the ore zone and a kaolinite from within the ore zone have {sup 230}Th/{sup 238}U of 0.58 to 0.83 and {sup 226}Ra/{sup 230}Th of 1.09 to 1.42, and (3) some Fe-mineral samples from within the breccia pipe have values of 1.2 and 0.9 respectively. These data, combined with those from other studies at Pena Blanca suggest that U and Ra are sometimes mobile in the near-surface environment and that multiple episodes of enrichment and leaching are required to explain the trends.« less