skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Fall and Recovery of the Tagish Lake Meteorite

Abstract

The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000 delivered >10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments. We also provide measurements of bulk physical properties (mass, grain and bulk density), bulk triple oxygen-isotope ratios, and short-lived cosmogenic radionuclides counts for several fragments. Ground eyewitnesses and recorded observations of the Tagish Lake fireball event provide a refined estimate of the fireball trajectory, and hence, its pre-atmospheric orbit. From its calculated orbit and its similarity to the remotely-sensed properties of the D and P-class asteroids, the Tagish Lake carbonaceous chondrite represents these outer belt asteroids, and is not of cometary origin. The bulk oxygen-isotope compositions reported here are among the highest known for meteorites. These data plot just below the Terrestrial Fractionation Line, following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.66 ±0.02 g/cm3) is the same, within error, as the total bulk densities of many C-class and especially D- and P-class asteroids. The high microporosity of Tagish Lake samples (~40%) providesmore » an obvious candidate material for the composition of low bulk density primitive asteroids such as Phobos, Deimos and the P-class binary 87 Sylvia, without requiring a substantial contribution from macroporosity in the form of ice, thick regolith or “rubble pile” assemblages with large interior voids.« less

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
882971
Report Number(s):
PNNL-SA-49711
400409900
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Meteoritics and Planetary Science, 41(3):407-431
Country of Publication:
United States
Language:
English
Subject:
fireball(s), meteorite fall, carbonaceous chondrite, orbit(s)

Citation Formats

Hildebrand, Alan R., McCausland, Phil J., Brown, Peter G., Longstaffe, Fred J., Russell, Samuel D., tagliaferri, Edward, Wacker, John F., and Mazur, michael J. The Fall and Recovery of the Tagish Lake Meteorite. United States: N. p., 2006. Web. doi:10.1111/j.1945-5100.2006.tb00471.x.
Hildebrand, Alan R., McCausland, Phil J., Brown, Peter G., Longstaffe, Fred J., Russell, Samuel D., tagliaferri, Edward, Wacker, John F., & Mazur, michael J. The Fall and Recovery of the Tagish Lake Meteorite. United States. doi:10.1111/j.1945-5100.2006.tb00471.x.
Hildebrand, Alan R., McCausland, Phil J., Brown, Peter G., Longstaffe, Fred J., Russell, Samuel D., tagliaferri, Edward, Wacker, John F., and Mazur, michael J. Wed . "The Fall and Recovery of the Tagish Lake Meteorite". United States. doi:10.1111/j.1945-5100.2006.tb00471.x.
@article{osti_882971,
title = {The Fall and Recovery of the Tagish Lake Meteorite},
author = {Hildebrand, Alan R. and McCausland, Phil J. and Brown, Peter G. and Longstaffe, Fred J. and Russell, Samuel D. and tagliaferri, Edward and Wacker, John F. and Mazur, michael J.},
abstractNote = {The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000 delivered >10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments. We also provide measurements of bulk physical properties (mass, grain and bulk density), bulk triple oxygen-isotope ratios, and short-lived cosmogenic radionuclides counts for several fragments. Ground eyewitnesses and recorded observations of the Tagish Lake fireball event provide a refined estimate of the fireball trajectory, and hence, its pre-atmospheric orbit. From its calculated orbit and its similarity to the remotely-sensed properties of the D and P-class asteroids, the Tagish Lake carbonaceous chondrite represents these outer belt asteroids, and is not of cometary origin. The bulk oxygen-isotope compositions reported here are among the highest known for meteorites. These data plot just below the Terrestrial Fractionation Line, following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.66 ±0.02 g/cm3) is the same, within error, as the total bulk densities of many C-class and especially D- and P-class asteroids. The high microporosity of Tagish Lake samples (~40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids such as Phobos, Deimos and the P-class binary 87 Sylvia, without requiring a substantial contribution from macroporosity in the form of ice, thick regolith or “rubble pile” assemblages with large interior voids.},
doi = {10.1111/j.1945-5100.2006.tb00471.x},
journal = {Meteoritics and Planetary Science, 41(3):407-431},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2006},
month = {Wed Mar 01 00:00:00 EST 2006}
}
  • We have analyzed available instrumental and eyewitness records associated with the fireball leading to the fall of the Tagish Lake meteorite. Initial chemical and physical studies of this carbonaceous chondrite have shown it to be unique. It is one of the most primitive meteorites yet recovered and extremely friable. By determining the original bodies trajectory, velocity and physical breakup in the atmosphere we can characterise the fireball as intermediate between Type II and Type IIIa, following the classification of Ceplecha et al. Modelling of the object suggests an initial porosity of the pre-atmospheric body in the range 40-60%. The initialmore » fragmentation occurred under less than 0.3 MPa dynamic pressure. Determination of Tagish Lake's orbit suggests a nominal linkage to parent bodies in the main asteroid belt, though association with short-period comets cannot be strictly excluded. It is suggested that Tagish Lake represents an intermediate object between chondritic asteroids and cometary bodies and our results are consistent with a linkage to D-class asteroids based on results from reflectance-spectra work.« less
  • On the night of March 26, 2003, a large meteorite broke up and fell upon the south suburbs of Chicago. The name Park Forest, for the village that is at the center of the strewnfield, has been approved by the Nomenclature Committee of the Meteoritical Society. Satellite data indicate that the bolide traveled from the southwest toward the northeast. The strewnfield has a southwest-northwest trend, however, probably due to the effects of strong weterly winds at high altitudes. Its very low Co-56 and very high Co-60 activities indicate that Park Forest had a preatmospheric mass that was at least ~900more » kg and could bave been as large as ~7000 kg, of which only ~30 kg have been recovered. This paper describes initial measurements to identify and characterize the Park Forest meteorite, which is classified as an L5 chondrite.« less
  • We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small ({le}20 {micro}m) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the Hmore » and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine and carbonates, suggests that the organic matter was susceptible to parent-body processing, and thus, isotopic dilution.« less
  • Early solar materials bear a variety of isotopic anomalies that reflect compositional differences deriving from distinct stellar nucleosynthetic processes. As shown in previous studies, the stepwise dissolution with increasing acid strengths of bulk rock carbonaceous chondrites liberates Cr with both excesses and deficits in {sup 53}Cr and {sup 54}Cr relative to the terrestrial standard. The magnitude of the {sup 54}Cr variations within a meteorite decreases in the sequence CI1 > CR2 > CM2 > CV3 > CO3 > CK4 and correlates with the degree of metamorphism of each carbonaceous chondrite class. This study shows that the Tagish Lake meteorite presentsmore » the highest excesses in {sup 54}Cr ever measured in a bulk silicate phase. According to this study, the Tagish Lake meteorite is composed of the least re-equilibrated material known at this time. The magnitude of {sup 54}Cr variation decreases now in the following sequence: Tagish Lake (ungrouped CI2) > Orgueil (CI1) > Murchison (CM2) > Allende (CV2). Moreover, this study shows that excesses in {sup 53}Cr relative to Earth can be interpreted as representing the extent of aqueous alteration on meteorite parent bodies. Finally, the high {sup 54}Cr anomalies measured in this meteorite make Tagish Lake one of the major targets to decipher the host of these anomalies.« less