skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PV Cell and Module Calibration Activities at NREL

Abstract

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
882603
Report Number(s):
NREL/CP-520-38936
DOE Contract Number:
AC36-99-GO10337
Resource Type:
Conference
Resource Relation:
Related Information: Presented at the 2005 DOE Solar Energy Technologies Program Review Meeting held November 7-10, 2005 in Denver, Colorado. Also included in the proceedings available on CD-ROM (DOE/GO-1020060-2245; NREL/CD-520-38577)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 47 OTHER INSTRUMENTATION; PHOTOVOLTAICS; SOLAR; MODULE CALIBRATION; PV; NREL; Solar Energy - Photovoltaics

Citation Formats

Emery, K., Anderberg, A., Kiehl, J., Mack, C., Moriarty, T., Ottoson, L., and Rummel, S. PV Cell and Module Calibration Activities at NREL. United States: N. p., 2005. Web.
Emery, K., Anderberg, A., Kiehl, J., Mack, C., Moriarty, T., Ottoson, L., & Rummel, S. PV Cell and Module Calibration Activities at NREL. United States.
Emery, K., Anderberg, A., Kiehl, J., Mack, C., Moriarty, T., Ottoson, L., and Rummel, S. Tue . "PV Cell and Module Calibration Activities at NREL". United States. doi:. https://www.osti.gov/servlets/purl/882603.
@article{osti_882603,
title = {PV Cell and Module Calibration Activities at NREL},
author = {Emery, K. and Anderberg, A. and Kiehl, J. and Mack, C. and Moriarty, T. and Ottoson, L. and Rummel, S.},
abstractNote = {The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 01 00:00:00 EST 2005},
month = {Tue Nov 01 00:00:00 EST 2005}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Photovoltaic (PV) Cell and Module Performance Characterization team at NREL supports the entire photovoltaic community by providing: secondary calibrations of photovoltaic cells and modules; efficiency measurements with respect to a given set of standard reporting conditions; verification of contract efficiency milestones; and current versus voltage (I-V) measurements under various conditions of temperature, spectral irradiance, and total irradiance. Support is also provided to in-house programs in device fabrication, module stability, module reliability, PV systems evaluations, and alternative rating methods by performing baseline testing, specialized measurements and other assistance when required. The I-V and spectral responsivity equipment used to accomplish thesemore » tasks are described in this paper.« less
  • NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.
  • The results of a 16 month technical evaluation performed on a nominal 1 kW{sub ac} utility-interconnect amorphous silicon PV system deployed at the National Renewable Energy Laboratory`s PV outdoor test site are given here. The system employs 64 prototype United Solar Systems Corp. Integrated/Direct Mount PV Roofing Modules mounted on simulated attic/roof structures. In this paper we show that the PV array fill factor has been relatively stable with respect to time and that the seasonal variations in performance can be largely attributed to seasonal variations in current. We also show that in determining the summer and winter ac powermore » output, the summation of the manufacturer-supplied module peak powers at STC for a similarly located and configured a-Si PV array should be derated by factors of approximately of 0.83 and 0.78 for summer and winter operation, respectively.« less
  • Several new formulations of ethylene vinyl acetate (EVA)-based encapsulant have been developed at NREL and have greatly improved photostability against UV-induced discoloration. The new EVA formulations use stabilizers and a curing agent entirely different from any of those used in existing formulations known to the authors. No discoloration was observed for the laminated and cured samples that were exposed to a {approximately}5-sun UV light (300--400 nm) from a solar simulator at a black panel temperature (BPT) of 44 {+-} 2 C for {approximately}3250 h followed by at 85 C for {approximately}850 h, an equivalent of approximately 9.4 years for anmore » average 6-h daily, 1-sun solar exposure in Golden, Colorado. Under the same conditions, substantial discoloration and premature delamination were observed for two commercial EVA formulations. Encapsulation with the new EVA formulations should extend the long-term stability for PV modules in the field, especially when coupled with UV-filtering, Ce-containing glass superstrates.« less
  • This paper presents a brief overview of the status and accomplishments during Fiscal Year (FY)2004 of the Photovoltaic (PV) Module Reliability and Performance R&D Subtask, which is part of the PV Module Reliability R&D Project (a joint NREL-Sandia project).