skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiochemical Analysis by High Sensitivity Micro X-Ray Fluorescence Detection

Abstract

The primary objective of the project was to develop a novel dual-optic x-ray fluorescence instrument capable of doing radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford Site.

Authors:
Publication Date:
Research Org.:
X-Ray Optical systems, Inc.
Sponsoring Org.:
USDOE
OSTI Identifier:
882477
Report Number(s):
DEO/ER/63280
EMSP 81967; TRN: US0702706
DOE Contract Number:
FG07-01ER63280
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; DETECTION; FLUORESCENCE; HIGH-LEVEL RADIOACTIVE WASTES; RADIOCHEMICAL ANALYSIS; SAVANNAH RIVER PLANT; SENSITIVITY

Citation Formats

Ning Gao. Radiochemical Analysis by High Sensitivity Micro X-Ray Fluorescence Detection. United States: N. p., 2006. Web. doi:10.2172/882477.
Ning Gao. Radiochemical Analysis by High Sensitivity Micro X-Ray Fluorescence Detection. United States. doi:10.2172/882477.
Ning Gao. Fri . "Radiochemical Analysis by High Sensitivity Micro X-Ray Fluorescence Detection". United States. doi:10.2172/882477. https://www.osti.gov/servlets/purl/882477.
@article{osti_882477,
title = {Radiochemical Analysis by High Sensitivity Micro X-Ray Fluorescence Detection},
author = {Ning Gao},
abstractNote = {The primary objective of the project was to develop a novel dual-optic x-ray fluorescence instrument capable of doing radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford Site.},
doi = {10.2172/882477},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri May 12 00:00:00 EDT 2006},
month = {Fri May 12 00:00:00 EDT 2006}
}

Technical Report:

Save / Share:
  • A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantlymore » reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.« less
  • A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantlymore » reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduce s background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.« less
  • A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantlymore » reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduces background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.« less