skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physically-Based Global Downscaling: Climate Change Projections for a Full Century

Abstract

A global atmosphere/land model with an embedded subgrid orography scheme is used to simulate the period 1977-2100 using ocean surface conditions and radiative constituent concentrations for a climate change scenario. Climate variables simulated for multiple elevation classes are mapping according to the high-resolution of topography in ten regions with complex terrain. Analysis of changes in the simulated climate lead to the following conclusions. Changes in precipitation vary widely, with precipitation increasing more with increasing altitude in some region, decreasing more with altitude in others, and changing little in still others. In some regions the sign of the precipitation change depends on surface elevation. Changes in surface air temperature are rather uniform, with at most a two-fold difference between the largest and smallest changes within a region. In most cases the warming increases with altitude. Changes in snow water are highly dependent on altitude. Absolute changes usually increase with altitude, while relative changes decrease. In places where snow accumulates, an artificial upper bound on snow water limits the sensitivity of snow water to climate change considerably. The simulated impact of climate change on regional mean snow water varies widely, with little impact in regions in which the upper bound on snowmore » water is the dominant snow water sink, moderate impact in regions with a mixture of seasonal and permanent snow, and profound impacts on regions with little permanent snow.« less

Authors:
;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
882372
Report Number(s):
PNNL-SA-44150
Journal ID: ISSN 0894-8755; JLCLEL; KP1703020; TRN: US200614%%12
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Climate, 19(9):1589-1604; Journal Volume: 19; Journal Issue: 9
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; CLIMATIC CHANGE; FORECASTING; CLIMATE MODELS; COMPLEX TERRAIN; ATMOSPHERIC PRECIPITATIONS; SENSITIVITY; SURFACE AIR; TOPOGRAPHY; OCEANOGRAPHY

Citation Formats

Ghan, Steven J., and Shippert, Timothy R. Physically-Based Global Downscaling: Climate Change Projections for a Full Century. United States: N. p., 2006. Web. doi:10.1175/JCLI3701.1.
Ghan, Steven J., & Shippert, Timothy R. Physically-Based Global Downscaling: Climate Change Projections for a Full Century. United States. doi:10.1175/JCLI3701.1.
Ghan, Steven J., and Shippert, Timothy R. Mon . "Physically-Based Global Downscaling: Climate Change Projections for a Full Century". United States. doi:10.1175/JCLI3701.1.
@article{osti_882372,
title = {Physically-Based Global Downscaling: Climate Change Projections for a Full Century},
author = {Ghan, Steven J. and Shippert, Timothy R.},
abstractNote = {A global atmosphere/land model with an embedded subgrid orography scheme is used to simulate the period 1977-2100 using ocean surface conditions and radiative constituent concentrations for a climate change scenario. Climate variables simulated for multiple elevation classes are mapping according to the high-resolution of topography in ten regions with complex terrain. Analysis of changes in the simulated climate lead to the following conclusions. Changes in precipitation vary widely, with precipitation increasing more with increasing altitude in some region, decreasing more with altitude in others, and changing little in still others. In some regions the sign of the precipitation change depends on surface elevation. Changes in surface air temperature are rather uniform, with at most a two-fold difference between the largest and smallest changes within a region. In most cases the warming increases with altitude. Changes in snow water are highly dependent on altitude. Absolute changes usually increase with altitude, while relative changes decrease. In places where snow accumulates, an artificial upper bound on snow water limits the sensitivity of snow water to climate change considerably. The simulated impact of climate change on regional mean snow water varies widely, with little impact in regions in which the upper bound on snow water is the dominant snow water sink, moderate impact in regions with a mixture of seasonal and permanent snow, and profound impacts on regions with little permanent snow.},
doi = {10.1175/JCLI3701.1},
journal = {Journal of Climate, 19(9):1589-1604},
number = 9,
volume = 19,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2006},
month = {Mon May 01 00:00:00 EDT 2006}
}
  • A global atmosphere/land model with an embedded subgrid orography scheme is used to simulate the period 1977-2100 using ocean surface conditions and radiative constituent concentrations for a climate change scenario. Climate variables simulated for multiple elevation classes are mapping according to a high-resolution elevation dataset in ten regions with complex terrain. Analysis of changes in the simulated climate leads to the following conclusions. Changes in precipitation vary widely, with precipitation increasing more with increasing altitude in some region, decreasing more with altitude in others, and changing little in still others. In some regions the sign of the precipitation change dependsmore » on surface elevation. Changes in surface air temperature are rather uniform, with at most a two-fold difference between the largest and smallest changes within a region; in most cases the warming increases with altitude. Changes in snow water are highly dependent on altitude. Absolute changes usually increase with altitude, while relative changes decrease. In places where snow accumulates, an artificial upper bound on snow water limits the sensitivity of snow water to climate change considerably. The simulated impact of climate change on regional mean snow water varies widely, with little impact in regions in which the upper bound on snow water is the dominant snow water sink, moderate impact in regions with a mixture of seasonal and permanent snow, and profound impacts on regions with little permanent snow.« less
  • The climate simulated by a global atmosphere/land model with a physically-based subgrid orography scheme is evaluated in ten selected regions. Climate variables simulated for each of multiple elevation classes within each grid cell are mapped according the high-resolution distribution of surface elevation in each region. Comparison of the simulated annual mean climate with gridded observations leads to the following conclusions. At low to moderate elevations the downscaling scheme correctly simulates increasing precipitation, decreasing temperature, and increasing snow with increasing elevation within regions smaller than 100 km. At high elevations the downscaling scheme correctly simulates a decrease in precipitation with increasingmore » elevation. Too little precipitation is simulated on the windward side of mountain ranges and too much precipitation is simulated on the lee side. The simulated sensitivity of surface air temperature to surface elevation is too strong, particularly in valleys influenced by drainage circulations. Observations show little evidence of a “snow shadow”, so the neglect of the subgrid rainshadow does not produce an unrealistic simulation of the snow distribution. Summertime snow area, which is a proxy for land ice, is much larger than observed. Summertime snow water equivalent is far less than the observed thickness of glaciers because a 1 m upper bound on snow water is applied to the simulations and because snow transport by slides is neglected. The 1 m upper bound on snow water equivalent also causes an underestimate of seasonal snow water during late winter, compared with gridded station measurements. Potential solutions to these problems are discussed.« less
  • A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique. The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It ismore » shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM). The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous [open quotes]2 CO[sub 2][close quotes] doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of I mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the lberian Peninsula, the change is - 10 mm/month, with a minimum of - 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ([open quotes]business as usual[close quotes]) increase of CO[sub 2], the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different. 17 refs., 10 figs.« less
  • Major changes in the global climate are virtually certain by the mid-21st century due to the carbon dioxide and other greenhouse gases. Researchers are beginning to explore ways we can adopt. Scientist have long known that human activities, particularly the burning of fossil fuels, are artificially increasing the volume of greenhouse gases in the earth's atmosphere. This increase will eventually make the planet the hottest it has been in history. What remains controversial about the greenhouse effect is the rate of this global warming, its regional distribution, and most of all, what to do about the problem.
  • This study performs high spatial resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 × 6180 km2, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections when applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4, showmore » smaller biases versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the U.S. Southwest, increasing intensity over the eastern United Sates and most of Canada, and an increase in the number of days with heavy precipitation over much of NA. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.« less