skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

Authors:
Publication Date:
Research Org.:
University of Tulsa
Sponsoring Org.:
USDOE
OSTI Identifier:
882208
DOE Contract Number:
FC26-00BC15125
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English

Citation Formats

Mohan Kelkar. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma. United States: N. p., 2006. Web. doi:10.2172/882208.
Mohan Kelkar. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma. United States. doi:10.2172/882208.
Mohan Kelkar. Sat . "Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma". United States. doi:10.2172/882208. https://www.osti.gov/servlets/purl/882208.
@article{osti_882208,
title = {Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma},
author = {Mohan Kelkar},
abstractNote = {},
doi = {10.2172/882208},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EST 2006},
month = {Sat Apr 01 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil and ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on long data, and sustained oil rates over long periods of time.
  • This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. A geological history that explains the presence of mobile water and oil in the reservoir was proposed. The combination of matrix and fractures in the reservoir explains the reservoir?s flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.
  • The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To develop better, produced water, disposal techniques so as to minimize lifting costs, surface separation costs and water disposal costs. (3) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (4) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (5) To evaluate various secondary recoverymore » techniques for oil reservoirs producing from fractured formations. (6) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions. The overall project goal would be to validate our hypothesis and to determine the best method to exploit reservoirs exhibiting ROC behavior. To that end, we will collect and analyze core samples, and run a single well tracer test during the Budget Period I. We will continue to drill vertical wells during this period. Once we understand the mechanism and are able to quantify the geological model, in Budget Period II we will drill several, additional wells. Depending on the feasibility, we will equip some of the vertical wells with downhole separator, as well as surface compact separator. This will allow us to compare the new technology with the existing one. In the Budget Period III, we will monitor the field performance and revise and refine our models to further optimize the performance.« less
  • The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (3) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (4) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (5) To enhance the productivity of producing wells by using new completion techniques.more » These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions. The overall project goal would be to validate our hypothesis and to determine the best method to exploit reservoirs exhibiting ROC behavior. To that end, we have completed the Budget Period I and have fulfilled many of the objectives. We have developed a viable model to explain the reservoir mechanism and have been able to develop a correlation between core and log data so that we can extend our analysis to other, yet unexploited, regions. In Budget Period II, we will continue to drill several additional, geologically targeted wells. Depending on the depositional system, these wells can be either vertical or horizontal wells. We will closely examine the secondary recovery techniques to improve the ultimate recovery from this field. In the mean time, we will continue to refine our geological and petrophysical model so that we can extend our approach to other adjacent fields. In the Budget Period III, we will monitor the field performance and revise and refine our models to further optimize the performance.« less
  • The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. Wemore » confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.« less