skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

Abstract

Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a lowmore » power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.« less

Authors:
;  [1]; ;
  1. (Dick) Baker
Publication Date:
Research Org.:
Spellman High Voltage Electronics Corporation, 475 Wireless Blvd., Hauppauge, NY 11788
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
881570
Report Number(s):
DOE GO13138-01
TRN: US200716%%121
DOE Contract Number:
FG36-03GO13138
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; ENERGY TRANSFER; HARMONICS; MULTIPLEXERS; POWER GENERATION; POWER RANGE; POWER SYSTEMS; PROGRAM MANAGEMENT; SOLENOIDS; SWITCHES; TOPOLOGY; WAVE FORMS; WIND POWER; ETM Converter; Energy Transfer Multiplexer; wind generation systems; permanent magnet generators; power processsing

Citation Formats

S. Merrill Skeist, Richard H., Anthony G.P. Marini, and DOE Project Officer - Keith Bennett. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project. United States: N. p., 2006. Web. doi:10.2172/881570.
S. Merrill Skeist, Richard H., Anthony G.P. Marini, & DOE Project Officer - Keith Bennett. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project. United States. doi:10.2172/881570.
S. Merrill Skeist, Richard H., Anthony G.P. Marini, and DOE Project Officer - Keith Bennett. Tue . "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project". United States. doi:10.2172/881570. https://www.osti.gov/servlets/purl/881570.
@article{osti_881570,
title = {100kW Energy Transfer Multiplexer Power Converter Prototype Development Project},
author = {S. Merrill Skeist and Richard H. and Anthony G.P. Marini and DOE Project Officer - Keith Bennett},
abstractNote = {Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.},
doi = {10.2172/881570},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 21 00:00:00 EST 2006},
month = {Tue Mar 21 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • The 100 kW plant is a direct contact boiling/direct contact condensing binary system using isopentane as the working fluid. Treated waste geothermal brine from the Great Lakes Chemical Co. (GLC) bromine recovery operation is the heat source. Brine is taken from the GLC Treated Brine Line at 205 to 210/sup 0/F and supplied to the pilot plant via the APL Brine Inlet Line. The brine enters the direct contact boiler (DCB) and vaporizes isopentane. The cooled brine is discharged into the reinjection pond at 135 to 155/sup 0/F. The brine flow rate is 45,655 to 87,030 lb(m)/hr (pounds mass permore » hour). The chemistry of the brine is discussed. The objectives here are to: (1) evaluate present pilot plant materials selections, (2) identify potential materials problems, and (3) recommend alternate materials for use in future systems. (MHR)« less
  • Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizesmore » the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.« less
  • The Contractor shall furnish all engineering labor, tools, services, supplies, materials, equipment, and facilities necessary to perform an investigation and study of means to extend the capability of the contractor's existing Power Center Inverter System to the 100 kW level. This 100 kW Inverter System shall meet the basic performance parameters of the frequency converter.
  • METC Prototype Test Valve No. F-1 is a hybrid design, based on a segmented ball termed a visor valve, developed and manufactured by Fairchild Stratos Division under contract to the Department of Energy. The valve uses a visor arm that rotates into position and then translates to seal. This valve conditionally completed static testing at METC with clean gas to pressures of 1600 psig and internal valve temperatures to 600/sup 0/F. External leakage was excessive due to leakage through the stuffing box, purge fittings, external bolts, and other assemblies. The stuffing box was repacked several times and redesigned midway throughmore » the testing, but external leakage was still excessive. Internal leakage through the seats, except for a few anomalies, was very low throughout the 2409 cycles of testing. As shown by the low internal leakage, the visor valve concept appears to have potential for lock-hopper valve applications. The problems that are present with METC Prototype Test Valve No. F-1 are in the seals, which are equivalent to the shaft and bonnet seals in standard valve designs. The operating conditions at these seals are well within the capabilities of available seal designs and materials. Further engineering and minor modifications should be able to resolve the problems identified during static testing.« less
  • Seven low cost multi-100 kW planar solar array modules were fabricated and tested. Two different designs were used, demonstrating advanced solar array construction practices. Both module types utilized second generation gridded back cells featuring high efficiency and IR transparency. A silicon dioxide AR coating optimized for transmission at gamma 1.7 microns was applied to the back surface. Two interconnect types, a single sheet printed circuit and a roll type, with alternate approaches to increasing transparency and reducing cost were designed and fabricated. Hinge stress and electrical power optimization were also examined. Two point designs were studied. The first design usedmore » a coilage longeron mast and is autonomously deployable. The second design used a Stac Beam for high natural frequency response and required astronaut assistance and assembly on orbit. It was conclusively demonstrated that planar arrays are the most cost effective design for use on the space station or other high power applications.« less