skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio

Abstract

Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
878671
Report Number(s):
PNNL-SA-49281
Journal ID: ISSN 0361-5995; SSSJD4; KP1202020; TRN: US200611%%430
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Soil Science Society of America Journal; Journal Volume: 70; Journal Issue: 1
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 29 ENERGY PLANNING, POLICY AND ECONOMY; AGRICULTURAL WASTES; BIOFUELS; BULK DENSITY; FOSSIL FUELS; MAIZE; OHIO; REMOVAL; SOILS

Citation Formats

Blanco-Canqui, H, Lal, Rattan, Post, W M., Izaurralde, R Cesar C., and Owens, L B. Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio. United States: N. p., 2006. Web. doi:10.2136/sssaj2005.0137.
Blanco-Canqui, H, Lal, Rattan, Post, W M., Izaurralde, R Cesar C., & Owens, L B. Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio. United States. doi:10.2136/sssaj2005.0137.
Blanco-Canqui, H, Lal, Rattan, Post, W M., Izaurralde, R Cesar C., and Owens, L B. Fri . "Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio". United States. doi:10.2136/sssaj2005.0137.
@article{osti_878671,
title = {Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio},
author = {Blanco-Canqui, H and Lal, Rattan and Post, W M. and Izaurralde, R Cesar C. and Owens, L B.},
abstractNote = {Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.},
doi = {10.2136/sssaj2005.0137},
journal = {Soil Science Society of America Journal},
number = 1,
volume = 70,
place = {United States},
year = {Fri Jan 06 00:00:00 EST 2006},
month = {Fri Jan 06 00:00:00 EST 2006}
}
  • Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships amongmore » soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (ρb), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ρb in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (ρb), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ρb in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.« less
  • Harvesting corn (Zea mays L.) stover for producing ethanol may be beneficial to palliate the dependence on fossil fuels and reduce CO2 emissions to the atmosphere, but stover harvesting may deplete soil organic carbon (SOC) and degrade soil structure. We investigated the impacts of variable rates of stover removal from no-till (NT) continuous corn systems on SOC and soil structural properties after 1 year of stover removal in three soils in Ohio: Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active,more » mesic Aquic Hapludalfs) at South Charleston. This study also assessed relationships between SOC and soil structural properties as affected by stover management. Six stover treatments that consisted of removing 100, 75, 50, 25, and 0, and adding 100% of corn stover corresponding to 0 (T0), 1.25 (T1.25), 2.50 (T2.5), 3.75 (T3.75), 5.00 (T5), and 10.00 (T10) Mg haj1 of stover, respectively, were studied for their total SOC concentration, bulk density (>b), aggregate stability, and tensile strength (TS) of aggregates. Effects of stover removal on soil properties were rapid and significant in the 0- to 5-cm depth, although the magnitude of changes differed among soils after only 1 year of stover removal. The SOC concentration declined with increase in removal rates in silt loams but not in clay loam soils. It decreased by 39% at Coshocton and 30% at Charleston within 1 year of complete stover removal. At the same sites, macroaggregates contained 10% to 45% more SOC than microaggregates. Stover removal reduced 94.75-mm macroaggregates and increased microaggregates (P G 0.01). Mean weight diameter (MWD) and TS of aggregates in soils without stover (T0) were 1.7 and 3.3 times lower than those in soils with normal stover treatments (T5) across sites. The SOC concentration was negatively correlated with >b and positively with MWD and LogTS. Stover removal at rates as low as 1.25 Mg haj1 reduced SOC and degraded soil structure even within 1 year, but further monitoring is needed to establish threshold levels of stover removal in relation to changes in soil quality.« less
  • Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion Tmore » values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.« less