skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

Abstract

Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

Authors:
Publication Date:
Research Org.:
Chemistry department at Duke University, Durham NC 27708
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
878161
Report Number(s):
DOE/ED/63321-1
TRN: US200712%%281
DOE Contract Number:
FG02-02ER63321
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; ACTINIDES; BACTERIA; BIOREMEDIATION; BY-PRODUCTS; GROUND WATER; METABOLISM; METABOLITES; MICROORGANISMS; ORGANIC ACIDS; RADIOISOTOPES; SOILS; TOXICITY; TRANSITION ELEMENTS; TRANSPORT; Actinides, siderophores, chelators, Cellular metal Uptake, metal toxicity

Citation Formats

Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.. United States: N. p., 2006. Web. doi:10.2172/878161.
Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.. United States. doi:10.2172/878161.
Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss. Tue . "Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.". United States. doi:10.2172/878161. https://www.osti.gov/servlets/purl/878161.
@article{osti_878161,
title = {Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.},
author = {Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss},
abstractNote = {Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.},
doi = {10.2172/878161},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 28 00:00:00 EST 2006},
month = {Tue Mar 28 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. Wemore » explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.« less
  • The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. Themore » microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.« less
  • The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneta, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid fatty acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB.
  • Copyright American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA, 19428, USA. This document is available from NTIS under license from ASTM.
  • The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and 14C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbialmore » activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of 14C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the 14C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.« less