skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray Spectroscopy of Cooling Cluster

Abstract

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

Authors:
; ; ;
Publication Date:
Research Org.:
Stanford Linear Accelerator Center (SLAC)
Sponsoring Org.:
USDOE
OSTI Identifier:
877975
Report Number(s):
SLAC-PUB-11612
TRN: US200609%%72
DOE Contract Number:
AC02-76SF00515
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; GALAXIES; RADIATIVE COOLING; RESOLUTION; X-RAY SPECTRA; X-RAY SPECTROSCOPY; Astrophysics,ASTRO

Citation Formats

Peterson, J.R., /SLAC, Fabian, A.C., and /Cambridge U., Inst. of Astron. X-ray Spectroscopy of Cooling Cluster. United States: N. p., 2006. Web. doi:10.2172/877975.
Peterson, J.R., /SLAC, Fabian, A.C., & /Cambridge U., Inst. of Astron. X-ray Spectroscopy of Cooling Cluster. United States. doi:10.2172/877975.
Peterson, J.R., /SLAC, Fabian, A.C., and /Cambridge U., Inst. of Astron. Tue . "X-ray Spectroscopy of Cooling Cluster". United States. doi:10.2172/877975. https://www.osti.gov/servlets/purl/877975.
@article{osti_877975,
title = {X-ray Spectroscopy of Cooling Cluster},
author = {Peterson, J.R. and /SLAC and Fabian, A.C. and /Cambridge U., Inst. of Astron.},
abstractNote = {We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.},
doi = {10.2172/877975},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 17 00:00:00 EST 2006},
month = {Tue Jan 17 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.
  • We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145, the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If themore » redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(< 360h{sup -1}kpc) = (1.2 {+-} 0.3) x 10{sup 15}M{circle_dot}. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.« less
  • A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.
  • Raman scattering of soft x-rays is observed in h-BN using monochromatic soft x-rays just below the B K absorption edge. The inelastic features are visible below threshold, track with the excitation energy, go through a resonance as the excitation is tuned to the B ls core exciton energy, and finally evolve into normal fluorescence as the excitation is raised above the energy needed to excite the B ls electron into the conduction band. The inelastic energy loss is identified as an excitation of valence {sigma} electrons into the {pi}* valence exciton state; at resonance and above, {pi} {minus} {pi}* transitionsmore » are also observed. At resonance, a sideband on the elastic peak Ls observed, which gives evidence of additional electronic and phonon loss processes. Very similar results have also been observed for B{sub 2}O{sub 3}.« less
  • X-ray Photo Emission Electron Microscopy (X-PEEM) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy were applied to study the properties of amorphous hard carbon overcoats on disks and sliders, and the properties of the lubricant. The modification of lubricants after performing thermal desorption studies was measured by NEXAFS, and the results are compared to the thermal desorption data. The study of lubricant degradation in wear tracks is described. Sliders were investigated before and after wear test, and the modification of the slider coating as well as the transfer of lubricant to the slider was studied. The studies show thatmore » the lubricant is altered chemically during the wear. Fluorine is removed and carboxyl groups are formed.« less