skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long Wave Infrared Cavity Enhanced Sensors

Abstract

The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) task is to explore ultra-sensitive spectroscopic chemical sensing techniques and apply them to detecting proliferation of weapons of mass destruction (WMD). Our primary application is detecting signatures of WMD production, but LWIR CES techniques are also capable of detecting chemical weapons. The LWIR CES task is concerned exclusively with developing novel point sensors; stand-off detection is addressed by other PNNL tasks and projects. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on LWIR CES sensor development.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
877071
Report Number(s):
PNNL-15576
NN2001000; TRN: US200608%%455
DOE Contract Number:
AC05-76RL01830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; DETECTION; LASERS; LIGHT SOURCES; PRODUCTION; PROLIFERATION; WEAPONS

Citation Formats

Taubman, Matthew S., Scott, David C., Cannon, Bret D., Myers, Tanya L., Munley, John T., Nguyen, Vinh T., and Schultz, John F. Long Wave Infrared Cavity Enhanced Sensors. United States: N. p., 2005. Web. doi:10.2172/877071.
Taubman, Matthew S., Scott, David C., Cannon, Bret D., Myers, Tanya L., Munley, John T., Nguyen, Vinh T., & Schultz, John F. Long Wave Infrared Cavity Enhanced Sensors. United States. doi:10.2172/877071.
Taubman, Matthew S., Scott, David C., Cannon, Bret D., Myers, Tanya L., Munley, John T., Nguyen, Vinh T., and Schultz, John F. Thu . "Long Wave Infrared Cavity Enhanced Sensors". United States. doi:10.2172/877071. https://www.osti.gov/servlets/purl/877071.
@article{osti_877071,
title = {Long Wave Infrared Cavity Enhanced Sensors},
author = {Taubman, Matthew S. and Scott, David C. and Cannon, Bret D. and Myers, Tanya L. and Munley, John T. and Nguyen, Vinh T. and Schultz, John F.},
abstractNote = {The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) task is to explore ultra-sensitive spectroscopic chemical sensing techniques and apply them to detecting proliferation of weapons of mass destruction (WMD). Our primary application is detecting signatures of WMD production, but LWIR CES techniques are also capable of detecting chemical weapons. The LWIR CES task is concerned exclusively with developing novel point sensors; stand-off detection is addressed by other PNNL tasks and projects. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on LWIR CES sensor development.},
doi = {10.2172/877071},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Dec 01 00:00:00 EST 2005},
month = {Thu Dec 01 00:00:00 EST 2005}
}

Technical Report:

Save / Share:
  • The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science andmore » technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR are offset by the superior performance, ma-turity, and robustness of SWIR lasers, detectors, and other components, while the reverse is true for the MWIR and LWIR bands. PNNL's research activities include identification of signature chemicals and quantification of their spectroscopy, exploration of novel sensing techniques, and experimental sensor system construction and testing. In FY02, experimental QC laser systems developed with DARPA funding were used to explore continuous-wave (cw) CES in various forms culminating in the NICE-OHMS technique [1-3] discussed below. In FY02 PNNL also built an SWIR sensor to validate utility of the SWIR spectral region for chemical sensing, and explore the science and engineering of CES in field environments. The remainder of this report is devoted to PNNL's LWIR CES research. During FY02 PNNL explored the performance and limitations of several detection tech-niques in the LWIR including direct cavity-enhanced absorption, cavity-dithered phase-sensitive detection and resonant sideband cavity-enhanced detection. This latter tech-nique is also known as NICE-OHMS, which stands for Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy. This technique, pioneered in the near infra-red (NIR) by Dr J. Hall and coworkers at the University of Colorado, is one of the most sensitive spectroscopic techniques currently known. In this report, the first demonstra-tion of this technique in the LWIR is presented.« less
  • The LWIR-CES report details the progress made on development of cavity-enhanced chemical sensors operating in the long wave infrared during FY03. This includes confirmation of the operating sensitivities and a detailed investigation of the limitations of these techniques. The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) project is to explore ultra-sensitive spectroscopic techniques and apply them to the development of LWIR chemical sensors needed for detecting signs of weapons proliferation and/or terrorist activities. This includes detecting not only the weapons of mass destruction (WMDs) themselves, but also signatures of their productionmore » and/or detonation. The LWIR CES project is concerned exclusively with developing point sensors; other portions of PNNL's IR Sensors program address stand off detection. PNNL's LWIR CES research is distinguished from that done by others by the use of quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on our LWIR CES sensor development.« less
  • The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) project is to explore ultra-sensitive spectroscopic techniques and apply them to the development of LWIR chemical sensors needed for detecting weapons proliferation. This includes detecting not only the weapons of mass destruction (WMDs) themselves, but also signatures of their production and/or detonation. The LWIR CES project is concerned exclusively with developing point sensors; other portions of PNNL's IR Sensors program address stand off detection. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) asmore » the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on our LWIR CES sensor development. During FY02, PNNL investigated three LWIR CES implementations beginning with the easiest to implement, direct cavity-enhanced detection (simple CES), including a technique of intermediate difficulty, cavity-dithered phase-sensitive detection (FM recovery CES) through to the most complex technique, that of resonant sideband cavity-enhanced detection also known as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, or NICE-OHMS.« less
  • Quantum cascade lasers (QCLs) are becoming well known as convenient and stable semiconductor laser sources operating in the mid- to long-wave infrared, and are able to be fabricated to operate virtually anywhere in the 3.5 to 25 micron region. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present, spanning at least three critical areas: national security, environmental monitoring and protection, and the early diagnosis of disease through breath analysis. There are many different laser-based spectroscopic chemical sensor architectures in use today, from simple direct detection through to more complex and highly sensitivemore » systems. Many current sensor needs can be met by combining QCLs and appropriate sensor architectures, those needs ranging from UAV-mounted surveillance systems, through to larger ultra-sensitive systems for airport security. In this paper we provide an overview of various laser-based spectroscopic sensing techniques, pointing out advantages and disadvantages of each. As part of this process, we include our own results and observations for techniques under development at PNNL. We also present the latest performance of our ultra-quiet QCL control electronics now being commercialized, and explore how using optimized supporting electronics enables increased sensor performance and decreased sensor footprint for given applications.« less
  • The principal goal of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project is to explore and develop the science and technology behind point and stand off infrared (IR) spectroscopic chemical sensors that are needed for detecting weapons proliferation activity and countering terrorism. Missions addressed include detecting chemical, biological, and nuclear weapons and their production; counter terrorism measures that involve screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons and/or their residues; and mapping of contaminated areas. The science and technology developed in this program is dual use in that it additionally supports progress in a diverse setmore » of agendas that include chemical weapons defense programs, air operations activities, emissions monitoring, law enforcement, and medical diagnostics. Sensors for these missions require extremely low limits of detection because many of the targeted signature species are either present in low concentrations or have extremely low vapor pressures. The sensors also need to be highly selective as the environments that they will be operated in will contain a variety of interferent species and false positive detection is not an option. PNNL has been working on developing a class of sensors that draw vapor into optical cavities and use laser-based spectroscopy to identify and quantify the vapor chemical content. The cavity enhanced spectroscopies (CES) afford extreme sensitivity, excellent selectivity, noise immunity, and rapid, real-time, in-situ chemical characterization. PNNL's CES program is currently focused on developing two types of sensors. The first one, which is based on cavity ring down spectroscopy (CRDS), uses short wave infrared (SWIR) lasers to interrogate species. The second sensor, which is based on noise immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE OHMS), uses long wave infrared (LWIR) quantum cascade lasers as the light source. This report details the research and discoveries made on the SWIR CRDS project. While chemical detection limits in the SWIR is not expected to be as low as that in the LWIR, there are a number of reasons for designing sensors that operate in this region. First and foremost is that high quality SWIR lasers, detectors and optics are commercially available. Technological advances made in the telecommunications sector have yielded photonic components that are robust, low power, compact and operate at room temperature. These components can be quickly combined and assembled to produce a sensor prototype. This is exactly what we have done with our cavity ring down sensor. We assembled our first prototype instrument in FY02, tested it in the laboratory, developed the chemometrics, and defined several improvements that needed to be implemented before trialing this sensor in the field. In FY03 we completed the refinements, retested the sensor in the laboratory, and then conducted our first field campaign. Our success was demonstrated by the ability of our SWIR CRDS to run autonomously and continuously for 7 days when located in PNNL's Shipping and Receiving Building. No false positive alarms were detected even though the environment was contaminated with vehicle exhaust fumes, dirt, dust, and volatile organic chemicals associated with packaging materials. The instrument maintained its detection threshold and calibration throughout the test. Small fluctuations that we observed in the background concentration levels have led us to develop a more robust method for calibrating the instrument, and separate tests we conducted in the laboratory have afforded a means to account interference from species that have very broad, but weak absorption in this spectral region. We outline all of these accomplishments in detail in the body of this report.« less