skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MENDING THE IN SITU MANIPULATION BARRIER

Abstract

In early 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from the DOE Headquarters EM-23 Technical Assistance Program to provide a team of technical experts to develop recommendations for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site in Washington State. To accommodate this request, EM-23 provided support to convene a group of technical experts from industry, a national laboratory, and a DOE site to participate in a 2 1/2-day workshop with the objective of identifying and recommending options to enhance the performance of the 100-D Area reactive barrier and of a planned extension to the northeast. This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)], which resulted from operation of the D/DR Reactors at the Hanford site, was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the In Situ Redox Manipulation (ISRM) technology, was installed a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodiummore » dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. The reduction of Fe(III) to ferrous [Fe(II)] iron provides the primary reduction capacity to reduce Cr(VI) to the +3 state, which is less mobile and less toxic. Bench-scale and field-scale treatability tests were initially conducted to demonstrate proof-of principle and to provide data for estimation of barrier longevity. These calculations estimated barrier longevity in excess of twenty years. However, several years after initial and secondary treatment, groundwater in a number of wells has been found to contain elevated chromium (Cr) concentrations, indicating some loss of reductive capacity within the aquifer. The Technical Assistance Team (TAT) was requested to perform the following activities: (1) evaluate the most probable condition(s) that has led to the presence of Cr(VI) in 12 different barrier wells (i.e. premature loss of reductive capacity), (2) recommend methods for determining the cause of the problem, (3) recommend methods for evaluating the magnitude of the problem, (4) recommend practicable method(s) for mending the barrier that involves a long-term solution, and (5) recommend methods for extending the barrier to the northeast (e.g., changing injection procedure, changing or augmenting the injected material). Since the March 2004 workshop, a decision has been made to place a hold on the barrier extension until more is known about the cause of the problem. However, the report complies with the original request for information on all of the above activities, but focuses on determining the cause of the problem and mending of the existing barrier.« less

Authors:
Publication Date:
Research Org.:
Hanford Site (HNF), Richland, WA
Sponsoring Org.:
USDOE - Office of Environmental Management (EM)
OSTI Identifier:
876695
Report Number(s):
WMP-28119 Rev 0
TRN: US200606%%607
DOE Contract Number:
DE-AC06-96RL13200
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; AQUIFERS; CAPACITY; CHROMIUM; COLUMBIA RIVER; DISSOLVED GASES; DOCUMENTATION; IRON; OXYGEN; PERFORMANCE; PHOSPHORS; PLUMES; RECOMMENDATIONS; REDUCING AGENTS; SODIUM

Citation Formats

PETERSEN, S.W. MENDING THE IN SITU MANIPULATION BARRIER. United States: N. p., 2006. Web. doi:10.2172/876695.
PETERSEN, S.W. MENDING THE IN SITU MANIPULATION BARRIER. United States. doi:10.2172/876695.
PETERSEN, S.W. Mon . "MENDING THE IN SITU MANIPULATION BARRIER". United States. doi:10.2172/876695. https://www.osti.gov/servlets/purl/876695.
@article{osti_876695,
title = {MENDING THE IN SITU MANIPULATION BARRIER},
author = {PETERSEN, S.W.},
abstractNote = {In early 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from the DOE Headquarters EM-23 Technical Assistance Program to provide a team of technical experts to develop recommendations for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site in Washington State. To accommodate this request, EM-23 provided support to convene a group of technical experts from industry, a national laboratory, and a DOE site to participate in a 2 1/2-day workshop with the objective of identifying and recommending options to enhance the performance of the 100-D Area reactive barrier and of a planned extension to the northeast. This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)], which resulted from operation of the D/DR Reactors at the Hanford site, was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the In Situ Redox Manipulation (ISRM) technology, was installed a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. The reduction of Fe(III) to ferrous [Fe(II)] iron provides the primary reduction capacity to reduce Cr(VI) to the +3 state, which is less mobile and less toxic. Bench-scale and field-scale treatability tests were initially conducted to demonstrate proof-of principle and to provide data for estimation of barrier longevity. These calculations estimated barrier longevity in excess of twenty years. However, several years after initial and secondary treatment, groundwater in a number of wells has been found to contain elevated chromium (Cr) concentrations, indicating some loss of reductive capacity within the aquifer. The Technical Assistance Team (TAT) was requested to perform the following activities: (1) evaluate the most probable condition(s) that has led to the presence of Cr(VI) in 12 different barrier wells (i.e. premature loss of reductive capacity), (2) recommend methods for determining the cause of the problem, (3) recommend methods for evaluating the magnitude of the problem, (4) recommend practicable method(s) for mending the barrier that involves a long-term solution, and (5) recommend methods for extending the barrier to the northeast (e.g., changing injection procedure, changing or augmenting the injected material). Since the March 2004 workshop, a decision has been made to place a hold on the barrier extension until more is known about the cause of the problem. However, the report complies with the original request for information on all of the above activities, but focuses on determining the cause of the problem and mending of the existing barrier.},
doi = {10.2172/876695},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 06 00:00:00 EST 2006},
month = {Mon Feb 06 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • In May of 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from DOE Headquarters EM-23 to provide a team of technical experts to evaluate likely chemical/biological amendments for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site. This request was a follow-on to an earlier request for assistance regarding the cause of chromium (Cr) breakthrough and recommendations for mending the barrier (March 2004 workshop). This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)] was discovered alongmore » the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the ISRM technology, was installed at a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. Bench-scale and field-scale treatability tests were conducted to demonstrate proof-of principle and to estimate barrier longevity, calculated to be in excess of twenty years. However, several years after initial and secondary treatment, groundwater in approximately 17 wells has been found to contain elevated Cr concentrations. The March 2004 technical assistance team (TAT) identified potential causes of Cr breakthrough as likely related to physical and chemical heterogeneity within the aquifer (including loss of reductive capacity within preferential flow paths) and the presence of other oxidants (DO and nitrate) significantly affecting the reductive capacity of the treated aquifer. These aquifer characteristics may limit the ability of alternative amendments to extend the reducing capacity of the barrier. A 2001 Bechtel Hanford report and evaluation of the ISRM performance data and barrier longevity assessment corroborate the observations and findings of the March 2004 TAT. The March 2004 TAT recommended the collection of new aquifer characterization data in combination with the interpretation of existing data to develop a conceptual model of aquifer heterogeneity to enable design of the most appropriate barrier mending system. The current TAT was convened to examine the most promising amendment that could be applied to mend the ISRM barrier. The Technical Assistance Team (TAT) performed the following activities: (1) Evaluate the most appropriate single or combination of chemical/biological amendments suitable for increasing the reductive capacity of the ISRM barrier; (2) Evaluate the most practicable means of introducing chemical/biological amendments in the target zones along the current BRM barrier; (3) Provide recommendations for laboratory treatability-testing protocol development to evaluate the type and delivery mechanisms of amendments in the current ISRM barrier location. Sections of this report present analyses and recommendations of potential amendments and delivery options to improve performance of the ISRM barrier. The report covers the spectrum of passive barrier mending to chemical and biological amendments that have been shown to perform more efficiently in more active remedial design approaches. Because DOE/RL is considering significant aquifer characterization studies as additional time and cost investment to mending the barrier, the TAT strongly recommends that DOE/RL conduct cost-benefit analyses of alternative designs to mend the barrier. In this way, the value and extent of characterization studies, compared to passive amendment delivery, compared to engineering redesign, can be quantitatively estimated for decision-making purposes.« less
  • The purpose of this study was to quantify the influence of physical and/or geochemical heterogeneities in the Hanford 100D area In Situ Redox Manipulation (ISRM) barrier, which may be contributing to the discontinuous chromate breakthrough locations along the 65-well (2,300 ft long) barrier. Possible causes of chromate breakthrough that were investigated during this study include: (1) high hydraulic conductivity zones; (2) zones of low reducible iron; and (3) high hydraulic conductivity zones with low reducible iron. This laboratory-scale investigation utilized geochemical and physical characterization data collected on 0.5 to 1 foot intervals from four borehole locations. Results of this laboratorymore » study did not provide definitive support any of the proposed hypotheses for explaining chromate breakthrough at the Hanford 100-D Area ISRM barrier. While site characterization data indicate a significant degree of vertical variability in both physical and geochemical properties in the four boreholes investigated, lateral continuity of high conductivity/low reductive capacity zones was not observed. The one exception was at the water table, where low reductive capacity and high-K zones were observed in 3 of four boreholes. Laterally continuous high permeability zones that contain oxic sediment near the water table is the most likely explanation for high concentration chromium breakthrough responses observed at various locations along the barrier. A mechanism that could explain partial chromate breakthrough in the ISRM barrier is the relationship between the field reductive capacity and the rate of chromate oxidation. Subsurface zones with low reductive capacity still have sufficient ferrous iron mass to reduce considerable chromate, but the rate of chromate reduction slows by 1 to 2 orders of magnitude relative to sediments with moderate to high reductive capacity. The original barrier longevity estimate of 160 pore volumes for homogeneous reduced sediment, or approximately 20 years, (with 5 mg/L dissolved oxygen and 2 ppm chromate) is reduced to 85 pore volumes (10 years) when the wide spread 60 ppm nitrate plume is included in the calculation. However, this reduction in barrier lifetime is not as great for high permeability channels, as there is insufficient time to reduce nitrate (and consume ferrous iron). If the cause of laterally discontinuous breakthrough of chromate along the ISRM barrier is due to oxic transport of chromate near the water table, additional dithionite treatment in these zones will not be effective. Treatment near the water table with a technology that emplaces considerable reductive capacity is needed, such as injectable zero valent iron.« less
  • The purpose of this study was to quantify the influence of physical and/or geochemical heterogeneities in the Hanford 100D area In Situ Redox Manipulation (ISRM) barrier, which may be contributing to the discontinuous chromate breakthrough locations along the 65-well (2,300 ft long) barrier. Possible causes of chromate breakthrough that were investigated during this study include: i) high hydraulic conductivity zones; ii) zones of low reducible iron; and iii) high hydraulic conductivity zones with low reducible iron. This laboratory-scale investigation utilized geochemical and physical characterization data collected on 0.5 to 1 foot intervals from four borehole locations.Results of this laboratory studymore » did not provide definitive support any of the proposed hypotheses for explaining chromate breakthrough at the Hanford 100-D Area ISRM barrier. While site characterization data indicate a significant degree of vertical variability in both physical and geochemical properties in the four boreholes investigated, lateral continuity of high conductivity / low reductive capacity zones was not observed. The one exception was at the water table, where low reductive capacity and high-K zones were observed in 3 of four boreholes.Laterally continuous high permeability zones that contain oxic sediment near the water table is the most likely explanation for high concentration chromium breakthrough responses observed at various locations along the barrier. A mechanism that could explain partial chromate breakthrough in the ISRM barrier is the relationship between the field reductive capacity and the rate of chromate oxidation. Subsurface zones with low reductive capacity still have sufficient ferrous iron mass to reduce considerable chromate, but the rate of chromate reduction slows by 1 to 2 orders of magnitude relative to sediments with moderate to high reductive capacity.The original barrier longevity estimate of 160 pore volumes for homogeneous reduced sediment, or approximately 20 years, (with 5 mg/L dissolved oxygen and 2 ppm chromate) is reduced to 85 pore volumes (10 years) when the wide spread 60 ppm nitrate plume is included in the calculation. However, this reduction in barrier lifetime is not as great for high permeability channels, as there is insufficient time to reduce nitrate (and consume ferrous iron). If the cause of laterally discontinuous breakthrough of chromate along the ISRM barrier is due to oxic transport of chromate near the water table, additional dithionite treatment in these zones will not be effective. Treatment near the water table with a technology that emplaces considerable reductive capacity is needed, such as injectable zero valent iron.« less
  • Ambient (i.e., static) and dynamic (i.e., pumping-induced) electromagnetic borehole flowmeter (EBF) surveys were performed in 10 selected In Situ Redox Manipulation (ISRM) barrier wells to characterize the distribution of in-well vertical flow conditions and to infer the relative hydraulic conductivity distribution in the upper-part of the unconfined aquifer. These wells are located in two areas where the aquifer is targeted for testing of zero-valent iron injection to mend a failed portion of the ISRM barrier at the 100 D Area, Hanford Site. Each of these two areas consists of a group of five wells, one group to the southwest andmore » one group to the northeast. The upper ~15 to 20 ft (~4.6 to 6.1 m) of the unconfined aquifer was characterized for in-well vertical flow conditions and vertical profile information regarding relative hydraulic conductivity. At some well site locations, the upper ~2 to 3 ft (~0.6 to 1 m) of the well-screen interval could not be characterized under pumping (dynamic) conditions because of the presence of the pump.« less