skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP) & QUICK SCREENS, ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS & EVALUATIONS

Abstract

Since the end of the cold war, the need for operating weapons production facilities has faded. Criticality Safety Limits and controls supporting production modes in these facilities became outdated and furthermore lacked the procedure based rigor dictated by present day requirements. In the past, in many instances, the formalism of present day criticality safety evaluations was not applied. Some of the safety evaluations amounted to a paragraph in a notebook with no safety basis and questionable arguments with respect to double contingency criteria. When material stabilization, clean out, and deactivation activities commenced, large numbers of these older criticality safety evaluations were uncovered with limits and controls backed up by tenuous arguments. A dilemma developed: on the one hand, cleanup activities were placed on very aggressive schedules; on the other hand, a highly structured approach to limits development was required and applied to the cleanup operations. Some creative approaches were needed to cope with the limits development process.

Authors:
Publication Date:
Research Org.:
Hanford Site (HNF), Richland, WA
Sponsoring Org.:
USDOE - Office of Environmental Management (EM)
OSTI Identifier:
876694
Report Number(s):
HNF-28766-FP Rev 0
TRN: US0601198
DOE Contract Number:
DE-AC06-96RL13200
Resource Type:
Conference
Resource Relation:
Conference: ANS ANNUAL MEETING, A BRILLIANT FUTURE NEXUS OF PUBLIC SUPPORT IN NUCLEAR TECHNOLOGY 06/04/2006 Thru 06/08/2006 RENO NEVADA
Country of Publication:
United States
Language:
English
Subject:
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; 42 ENGINEERING; CRITICALITY; SAFETY ANALYSIS; NUCLEAR WEAPONS; INDUSTRIAL PLANTS; DECOMMISSIONING; LIMITING VALUES

Citation Formats

TOFFER, H. CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP) & QUICK SCREENS, ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS & EVALUATIONS. United States: N. p., 2006. Web.
TOFFER, H. CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP) & QUICK SCREENS, ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS & EVALUATIONS. United States.
TOFFER, H. Tue . "CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP) & QUICK SCREENS, ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS & EVALUATIONS". United States. doi:. https://www.osti.gov/servlets/purl/876694.
@article{osti_876694,
title = {CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP) & QUICK SCREENS, ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS & EVALUATIONS},
author = {TOFFER, H.},
abstractNote = {Since the end of the cold war, the need for operating weapons production facilities has faded. Criticality Safety Limits and controls supporting production modes in these facilities became outdated and furthermore lacked the procedure based rigor dictated by present day requirements. In the past, in many instances, the formalism of present day criticality safety evaluations was not applied. Some of the safety evaluations amounted to a paragraph in a notebook with no safety basis and questionable arguments with respect to double contingency criteria. When material stabilization, clean out, and deactivation activities commenced, large numbers of these older criticality safety evaluations were uncovered with limits and controls backed up by tenuous arguments. A dilemma developed: on the one hand, cleanup activities were placed on very aggressive schedules; on the other hand, a highly structured approach to limits development was required and applied to the cleanup operations. Some creative approaches were needed to cope with the limits development process.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Feb 21 00:00:00 EST 2006},
month = {Tue Feb 21 00:00:00 EST 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • A new resolved resonance region evaluation of 63Cu and 65Cu was done in the energy region from 10-5 eV to 99.5 keV. The R-Matrix SAMMY method using the Reich-Moore approximation was used to create a new set of consistent resonance parameters. The new evaluation was based on three experimental transmission data sets; two measured at ORELA and one from MITR, and two radiative capture experimental data sets from GELINA. A total of 141 new resonances were identied for 63Cu and 117 for 65Cu. The corresponding set of external resonances for each isotope was based on the identied resonances above 99.5more » keV from the ORELA transmission data. The negative external levels (bound levels) were determined to match the dierential thermal cross section measured at the MITR. Double dierential elastic scattering cross sections were calculated from the new set of resonance parameters. Benchmarking calculations were carried out on a set of ICSBEP benchmarks. This work is in support of the DOE Nuclear Criticality Safety Program.« less
  • The 'Criticality HazOp' technique, as developed at Hanford's Plutonium Finishing Plant (PFP), has allowed for efficiencies enabling shortening of the time necessary to complete new or revised criticality safety evaluation reports (CSERs). For example, in the last half of 2007 at PFP, CSER revisions undergoing the 'Criticality HazOp' process were completed at a higher rate than previously achievable. The efficiencies gained through use of the 'Criticality HazOp' process come from the preliminary narrowing of potential scenarios for the Criticality analyst to fully evaluate in preparation of the new or revised CSER, and from the use of a systematized 'Criticality HazOp'more » group assessment of the relevant conditions to show which few parameter/condition/deviation combinations actually require analytical effort. The 'Criticality HazOp' has not only provided efficiencies of time, but has brought to criticality safety evaluation revisions the benefits of a structured hazard evaluation method and the enhanced insight that may be gained from direct involvement of a team in the process. In addition, involved personnel have gained a higher degree of confidence and understanding of the resulting CSER product.« less
  • The programmatic, facility and criticality safety support staffs at the LLNL Plutonium Facility worked together to successfully develop and implement a project to process legacy (DNFSB Recommendation 94-1 and non-Environmental, Safety, and Health (ES&H) labeled) materials in storage. Over many years, material had accumulated in storage that lacked information to adequately characterize the material for current criticality safety controls used in the facility. Generally, the fissionable material mass information was well known, but other information such as form, impurities, internal packaging, and presence of internal moderating or reflecting materials were not well documented. In many cases, the material was excessmore » to programmatic need, but such a determination was difficult with the little information given on MC&A labels and in the MC&A database. The material was not packaged as efficiently as possible, so it also occupied much more valuable storage space than was necessary. Although safe as stored, the inadequately characterized material posed a risk for criticality safety noncompliances if moved within the facility under current criticality safety controls. A Legacy Item Implementation Plan was developed and implemented to deal with this problem. Reasonable bounding conditions were determined for the material involved, and criticality safety evaluations were completed. Two appropriately designated glove boxes were identified and criticality safety controls were developed to safely inspect the material. Inspecting the material involved identifying containers of legacy material, followed by opening, evaluating, processing if necessary, characterizing and repackaging the material. Material from multiple containers was consolidated more efficiently thus decreasing the total number of stored items to about one half of the highest count. Current packaging requirements were implemented. Detailed characterization of the material was captured in databases and new ES&H container labels applied. In many cases, legacy material that was inspected was determined to be excess to programmatic needs and it was then either processed to meet the DOE-3013-STD or designated as TRU waste and disposed of accordingly. During FY2003 through FY2004 approximately 1600 items were opened and the items processed if necessary, repackaged and newly labeled with ES&H labels. As of April, 2005, there are only 32 non-ES&H labeled items in existence within the Plutonium Facility. Due to a consolidated effort in dealing with the legacy items, the problems associated with storage of these items at LLNL has been substantially abated. The paper will discuss the background, implementation, and results of the SNM Legacy Items Implementation Project. Benefits and Lessons Learned will be identified.« less
  • Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, andmore » 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.« less
  • This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less