skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Performance Fuel Desing for Next Generation Pressurized Water Reactors

Abstract

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or themore » spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.« less

Authors:
;
Publication Date:
Research Org.:
Massachusetts Institute of Technology
Sponsoring Org.:
USDOE - Office of Nuclear Energy, Science and Technology (NE)
OSTI Identifier:
876439
Report Number(s):
Final Report
TRN: US200717%%588
DOE Contract Number:
FG07-01SF22329
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; ATOMIC ENERGY OF CANADA LTD; CLOSURES; ECONOMICS; FABRICATION; FUEL MANAGEMENT; FUEL PELLETS; FUEL RODS; HEAT FLUX; MECHANICAL VIBRATIONS; POWER DENSITY; POWER GENERATION; PWR TYPE REACTORS; SAFETY; SHUTDOWN; TRANSIENTS; ZIRCONIUM OXIDES; High Power Nuclear Fuel, Annular Nuclear Fuel, Advanced PWR Fuel, High Performance Nuclear Fuel

Citation Formats

Mujid S. Kazimi, and Pavel Hejzlar. High Performance Fuel Desing for Next Generation Pressurized Water Reactors. United States: N. p., 2006. Web. doi:10.2172/876439.
Mujid S. Kazimi, & Pavel Hejzlar. High Performance Fuel Desing for Next Generation Pressurized Water Reactors. United States. doi:10.2172/876439.
Mujid S. Kazimi, and Pavel Hejzlar. Tue . "High Performance Fuel Desing for Next Generation Pressurized Water Reactors". United States. doi:10.2172/876439. https://www.osti.gov/servlets/purl/876439.
@article{osti_876439,
title = {High Performance Fuel Desing for Next Generation Pressurized Water Reactors},
author = {Mujid S. Kazimi and Pavel Hejzlar},
abstractNote = {The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.},
doi = {10.2172/876439},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 31 00:00:00 EST 2006},
month = {Tue Jan 31 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • Post-irradiation studies on failure mechanisms of well characterized PWR rods were conducted for up to a year at 482, 510 and 571/sup 0/C in unlimited air and inert gas atmospheres. No cladding breaches occurred even though the tests operated many orders of magnitude longer in time than the lifetime predicted by Blackburn's analyses. The extended lifetime is due to significant creep strain of the Zircaloy cladding which decreases the internal rod pressures. The cladding creep also contributes to radial cracks, through the external oxide and internal FCCI layers, which propagated into and arrested in an oxygen stabilized ..cap alpha..-Zircaloy layer.more » There were no signs of either additional cladding hydriding, stress-corrosion cracking or fuel pellet degradation. Using the Larson-Miller formulization, a conservative maximum storage temperature of 400/sup 0/C is recommended to ensure a 1000-year cladding lifetime. This accounts for crack propagation and assumes annealing of the irradiation-hardened cladding.« less
  • The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreasedmore » fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.« less
  • The Electric Power Research Institute (EPRI) commissioned an operations-related project (RP1557-26) in mid-1986 to update the project data base developed for EPRI Report NP-3370, ''Identification of Radwaste Sources and Reduction Techniques,'' which was published in January 1984. An update was deemed particularly desirable in order to assess the impact on power reactor low level radioactive waste generation of 10 CFR 61, the recent implementation of the 1985 Amendment to the Low Level Waste Policy Act of 1980 (and its potential effects on accelerated waste shipment programs), and the efforts of several plants to implement waste minimization program over the pastmore » several years. These events, as reflected in waste generation rates from 1982 through 1985, should help NP-3370 continue to be a useful document for a plant's radwaste manager in the future. Furthermore, the trends of the past several years presented herein should help to more accurately define utility waste source terms for use in planning on-site storage and developing regional burial facilities. A new data base was developed that includes 1982 through 1986 information, as well as pertinent portions of the 1978 through 1981 data base. The result of the project is a two volume report comprising radwaste related information from more than 95% of the nuclear power plants in commerical operation as of 1986. Volume 1 contains all information pertaining to boiling water reactors (BWRs), while Volume 2 contains information for pressurized water reactors (PWRs). The computerized data base of waste volumes, sources and characteristics for each plant type (BWR or PWR) is included as an appendix in each respective volume. 36 figs., 26 tabs.« less