skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: IR Optimization, DID and anti-DID

Abstract

In this paper, we discuss optimization of the larger crossing angle Interaction Region of the Linear Collider, where specially shaped transverse field of the Detector Integrated Dipole can be reversed and adjusted to optimize trajectories of the low energy pairs, so that their majority would be directed into the extraction exit hole. This decreases the backscattering and makes background in 14mrad IR to be similar to background in 2mrad IR.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Stanford Linear Accelerator Center (SLAC)
Sponsoring Org.:
USDOE
OSTI Identifier:
876041
Report Number(s):
SLAC-PUB-11662
TRN: US0600984
DOE Contract Number:
AC02-76SF00515
Resource Type:
Conference
Resource Relation:
Conference: Contributed to 36th ICFA Advanced Beam Dynamics Workshop (NANOBEAM 2005), Kyoto, Japan, 17-21 Oct 2005
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; BACKSCATTERING; BEAM DYNAMICS; DIPOLES; LINEAR COLLIDERS; OPTIMIZATION; TRAJECTORIES; Accelerators,ACCPHY

Citation Formats

Seryi, Andrei, Maruyama, Takashi, /SLAC, Parker, Brett, and /Brookhaven. IR Optimization, DID and anti-DID. United States: N. p., 2006. Web.
Seryi, Andrei, Maruyama, Takashi, /SLAC, Parker, Brett, & /Brookhaven. IR Optimization, DID and anti-DID. United States.
Seryi, Andrei, Maruyama, Takashi, /SLAC, Parker, Brett, and /Brookhaven. Fri . "IR Optimization, DID and anti-DID". United States. doi:. https://www.osti.gov/servlets/purl/876041.
@article{osti_876041,
title = {IR Optimization, DID and anti-DID},
author = {Seryi, Andrei and Maruyama, Takashi and /SLAC and Parker, Brett and /Brookhaven},
abstractNote = {In this paper, we discuss optimization of the larger crossing angle Interaction Region of the Linear Collider, where specially shaped transverse field of the Detector Integrated Dipole can be reversed and adjusted to optimize trajectories of the low energy pairs, so that their majority would be directed into the extraction exit hole. This decreases the backscattering and makes background in 14mrad IR to be similar to background in 2mrad IR.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Feb 03 00:00:00 EST 2006},
month = {Fri Feb 03 00:00:00 EST 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The kaon was studied very thoroughly since its discovery some 50 years ago. In the study of charged kaon branching ratios, it was noticed that K{sup +} {r_arrow} {pi}{sup 0}e{sup +}{nu}{sub e} is allowed while K{sup +} {r_arrow} {pi}{sup +}{nu}{anti {nu}} is not. The latter was then empirically classified as a forbidden decay, leading to the so called strangeness changing current rule. The decay K{sup +} {r_arrow} {pi}{sup 0}e{sup +}{nu}{sub e} is mediated by the strangeness changing charged current and its branching ratio is 4.8%. By contrast K{sup +} {r_arrow} {pi}{sup +}{nu}{anti {nu}} is a strangeness changing neutral current, whichmore » is forbidden. In 1970, the GIM model was introduced to explain this effect and in 1974, Gaillard and Lee calculated the K{sup +} {r_arrow} {pi}{sup +}{nu}{anti {nu}} branching ratio to be on the order of 10{sup {minus}10}. In the current theory, the K{sup +} {r_arrow} {pi}{sup +}{nu}{anti {nu}} is mediated by a Flavor Changing Neutral Current (FCNC) in which the cancellation of the three quark generations should be complete down to second order except for the difference in the quark masses. The top quark is much heavier than the charm and up quarks, so that the cancellation is not complete. In other words, this decay is more dependent on the top sector. The measurement of K{sup +} {r_arrow}{pi}{sup +}{nu}{anti {nu}} branching ratio measures the modulus of the V{sub td} element of the CKM Matrix. The 1995 results of E787 were published in 1997. This report is focused on how the author achieved the goal of detecting events with such as small branching ratio.« less
  • Experiments were performed to examine sensitivity of thin-film property determinations to several experimental variables when applying multivariate calibration methods to infrared reflection spectroscopic data. Results indicate that low angles of incidence are best for robust quantitative determination of boron, phosphorus, and film thickness in borophosphosilicate glass (BPSG) dielectric films. However, the polarization state of the incidence beam does not affect the quantitative prediction ability.
  • The goal of the RHIC 2004 Au-Au run was to maximize the achieved integrated luminosity. One way is to increase beam currents and minimize beam transverse emittances. Another important ingredient is the minimization of time spent on activities postponing the declaration of ''physics conditions'', i.e. stable beam conditions allowing the experimental detectors to take data. Since collision rates are particularly high in the beginning of the store the integrated luminosity benefits considerably from any minute saved early in the store. In the RHIC run 2004 a new IR steering application uses luminosity monitor signals as a feedback for a fullymore » automated steering procedure. This report gives an overview of the used procedure and summarizes the achieved results.« less
  • This paper presents the optimized designs of an ''open midplane dipole'' [1] for ''dipole first optics'' [2] for the proposed luminosity upgrade of the Large Hadron Collider (LHC). It was found [3] that in this design at luminosity of 10{sup 35} cm{sup -2} s{sup -1}, the peak power density in the coils can be up to two orders of magnitude higher than that at the present baseline luminosity (10{sup 34} cm{sup -2} s{sup -1}). This comes from a large quantity of spray particles from Interaction Point (IP) that is mostly concentrated at the midplane. The ''open midplane dipole'' design ismore » the only design so far that has been found to provide reliable quench-stable operation with a lifetime of the critical components of at least ten years. In addition to a summary of magnetic, mechanical and energy deposition calculations for various iterations, the inherent benefits and challenges associated with the ''open midplane dipole'' design are also discussed. Results are presented for a recently proposed attractive option with the dipole splitted in two with a warm absorber placed between the two [4].« less
  • Abstract not provided.