skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Effect of Estradiol-17(beta), Goitrogen (T3), and Flutamide on Gene Expression in Medaka, Oryzias latipes

Technical Report ·
DOI:https://doi.org/10.2172/875642· OSTI ID:875642

Concern has been generated over the discovery of endocrine disrupting chemicals in rivers near sewage outflows. The presence of endocrine disrupting chemicals such as estradiol-17{beta} has been associated with a reduction of reproductive success in fish and an increase in the female phenotype and gonadal intersex in fish downstream of sewage treatment facilities. Such effects are believed to result from a disruption in the normal estrogenic pathways since estrogen plays a vital role in reproduction, sexual differentiation, the developments of secondary sex characteristics, and ovulation. Most studies have focused on the effect of a single endocrine disruptor on a single gene which does not provide for the interaction between genes. Microarray technology has made it possible to put an entire genome on a single chip so that researchers can get a clearer picture of the interaction of genes expressed in a cell and changes of said interactions when those cells are exposed to various conditions. Medaka males were exposed to known endocrine disruptors, estradial-17{beta} and goitrogen, and medaka females were exposed to flutamide. All treatments were then compared to controls. Total RNA was extracted from the livers of both treated and untreated males and hybridized to a microarray chip designed to have EST sequences specific to medaka. ESTs were identified through two-channel microarray analysis and compared to GenBank using blastn searches to identify up regulated genes. Choriogenins H and L, zona radiata, and vitellogenin, previously shown to be estrogen-induced in male fish were identified. Heat shock proteins (hsp70, hsp90, and hsp8) were also induced by estradiol-17{beta}, as was choriogenin Hminor. Exposure to goitrogen (T3) resulted in the induced expression of glutathione S-transferase and a GABA receptor protein in male medaka. Treatment with flutamide, an antiandrogen, caused the up regulation of choriogenin L, choriogenin Hminor, and zona radiata-2 in female medaka. Further study of the genes identified in this study may serve as possible biomarkers to signal the effects caused by the presence of endocrine disruptors and provide a screening mechanism for the presence of estrogens in the environment. Microarray technology may provide a means to screen multiple biomarkers simultaneously and provide a more rapid and accurate tool for assessing endocrine disruption due to environmental pollutants.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
875642
Report Number(s):
UCRL-TR-215197; TRN: US200603%%166
Country of Publication:
United States
Language:
English