skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Permanent Magnet Quadrupoles with Adjustable Field Strength and Centerline Movement Compensation

Authors:
Publication Date:
Research Org.:
STI Optronics, Inc.
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
875589
Report Number(s):
DOE/DE/83305
DOE Contract Number:
FG03-01ER83305
Type / Phase:
SBIR
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; Permanent Magnets, Quadrupoles, Beam based alignment, Centerline stability

Citation Formats

Stephen Gottschalk. Permanent Magnet Quadrupoles with Adjustable Field Strength and Centerline Movement Compensation. United States: N. p., 2006. Web.
Stephen Gottschalk. Permanent Magnet Quadrupoles with Adjustable Field Strength and Centerline Movement Compensation. United States.
Stephen Gottschalk. Wed . "Permanent Magnet Quadrupoles with Adjustable Field Strength and Centerline Movement Compensation". United States. doi:.
@article{osti_875589,
title = {Permanent Magnet Quadrupoles with Adjustable Field Strength and Centerline Movement Compensation},
author = {Stephen Gottschalk},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2006},
month = {Wed Feb 01 00:00:00 EST 2006}
}

Technical Report:
This technical report may be protected. To request the document, click here.
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item. Keep in mind that many technical reports are not cataloged in WorldCat.

Save / Share:
  • The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0 -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use eithermore » Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype. See High Reliability Prototype Quadrupole for the Next Linear Collider by C.E Rago, C.M SPENCER, Z. Wolf submitted to this conference.« less
  • Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that themore » drive beam is stable over the entire TBA unit.« less
  • The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnetsmore » have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype.« less
  • A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials andmore » with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.« less