skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DOE Final Report -NON-LINEAR WAVES IN CONTINUOUS MEDIA- BES- Division of Engineering and Materials Science

Abstract

FINAL REPORT ON : NON-LINEAR WAVES IN CONTINUOUS MEDIA Doe DE FG03-87ER13686 (001312-001) Submitted January 10, 2006 by Seth J. Putterman 310-8252269 Physics Department University of California Los Angeles, CA 90095 puherman@ritva.physics.ucla.edu NON-LINEAR WAVES IN CONTINUOUS MEDIA I am happy to report that this project has been a big success. For over 10 years the DOE [Division of Materials Sciences and Engineering] has funded our research program on the overarching theme of spontaneous energy focusing phenomena. These effects occur when a nonlinear macroscopic system is excited so as to drive it far from equilibrium. The subsequent relaxation to equilibrium does not occur smoothly but instead is accompanied by the formation of structured domains where the energy density is highly concentrated. A signature example is picosecond sonoluminescence [1] wherein a smooth sound wave has its energy density focused by 12 orders of magnitude to generate a clock-like string of picosecond flashes of ultraviolet light. Our earlier work on solitons [2] demonstrated how uniform surface waves break up into stable localized structures. Our experimental work on turbulence produced photos of localized structures lying many standard deviations outside the range of gaussian statistics[3]. This effect is referred to as intermittency. Our recent workmore » on friction finds its motivation in those theories of sonoluminescence which invoke frictional electricity. In its most common form this is the generation of a spark when we touch a doorknob after walking over a carpet. Our reading of the literature on this subject indicated that frictional electricity like sonoluminescence is not understood. So to probe triboelectrification we set up a modern version of an experiment performed by Bernoulli in 1700. Here sparking is caused by the rubbing of glass against mercury. We indeed observed flashes of light which were accompanied by events of stick-slip friction at the interface between the mercury and glass. Furthermore, we found that a very slow relative motion of 1mm/second created repetitive macroscopic picosecond discharges wherein electrons are accelerated to at least 1% of the speed of light[4]. Following up on the Bernoulli-Picard effect we wondered if electrification played a role in ordinary friction and if friction itself might be another example of an energy focusing effect. Indeed we found that dry friction is due to the spontaneous formation of atomic/molecular bonds at the interface of two materials brought into contact. Bond formation provides for the stick in stick-slip friction. When the external force is great enough to rupture the bonds the interface slips. Thus the averaged normal force applied to an interface is focused down to the level of individual bonds where quantum mechanics comes into play in determining the properties of friction in macroscopic systems[5,6,7]. A typical applied stress is about 1bar whereas the focused stress at the bonds which spontaneously form at the interface is about 1Megabar. This stress is so great that it locally distorts the interface and leads to spot cold welding between surfaces in contact. And as these cold welds grow the change in stiffness of the junction displays quantum jumps which we have observed even when the bodies in contact have macroscopic dimensions [7]. The intellectual thrust for all the advances mentioned above has been seeded by the Division of Materials Sciences and Engineering. We believe that our efforts have generated favorable science based publicity for Basic Energy Science. The Principal Investigator has been invited to give colloquia at each of the top 20 universities at least once. The New York Times has written 3 science articles based on our effort on sonoluminescence and the mercury light. Nature has written a news-story about our work on solitons [8] and more recently a news-story about our work on cold welding [9]. Our recent success in scaling up sonoluminescence to pulses with a peak power of 1/2Watt [10] has just been reported by Physics Today[11], and a presentation to the Acoustical Society of America [12] about megakelvin sonoluminescing bubbles has been picked up by Business Week [13]. Additional news articles about our work in Nature, Science, etc. could be cited.« less

Authors:
Publication Date:
Research Org.:
University of California at Los Angeles
Sponsoring Org.:
USDOE - Office of Energy Research (ER)
OSTI Identifier:
875337
Report Number(s):
DOE/ER/13686-1
001312-001; TRN: US0702451
DOE Contract Number:  
FG03-87ER13686
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; ELECTRICITY; ELECTRONS; ENERGY DENSITY; FLEXIBILITY; FOCUSING; FRICTION; GLASS; MERCURY; PEAK LOAD; PHYSICS; QUANTUM MECHANICS; RELAXATION; RUPTURES; SOLITONS; SOUND WAVES; TURBULENCE; VELOCITY; WELDING; nonlinear, friction, sonoluminescence, acoustics, soliton, turbulence, intermittency, cavitation,

Citation Formats

Putterman, Seth J. DOE Final Report -NON-LINEAR WAVES IN CONTINUOUS MEDIA- BES- Division of Engineering and Materials Science. United States: N. p., 2006. Web. doi:10.2172/875337.
Putterman, Seth J. DOE Final Report -NON-LINEAR WAVES IN CONTINUOUS MEDIA- BES- Division of Engineering and Materials Science. United States. doi:10.2172/875337.
Putterman, Seth J. Tue . "DOE Final Report -NON-LINEAR WAVES IN CONTINUOUS MEDIA- BES- Division of Engineering and Materials Science". United States. doi:10.2172/875337. https://www.osti.gov/servlets/purl/875337.
@article{osti_875337,
title = {DOE Final Report -NON-LINEAR WAVES IN CONTINUOUS MEDIA- BES- Division of Engineering and Materials Science},
author = {Putterman, Seth J},
abstractNote = {FINAL REPORT ON : NON-LINEAR WAVES IN CONTINUOUS MEDIA Doe DE FG03-87ER13686 (001312-001) Submitted January 10, 2006 by Seth J. Putterman 310-8252269 Physics Department University of California Los Angeles, CA 90095 puherman@ritva.physics.ucla.edu NON-LINEAR WAVES IN CONTINUOUS MEDIA I am happy to report that this project has been a big success. For over 10 years the DOE [Division of Materials Sciences and Engineering] has funded our research program on the overarching theme of spontaneous energy focusing phenomena. These effects occur when a nonlinear macroscopic system is excited so as to drive it far from equilibrium. The subsequent relaxation to equilibrium does not occur smoothly but instead is accompanied by the formation of structured domains where the energy density is highly concentrated. A signature example is picosecond sonoluminescence [1] wherein a smooth sound wave has its energy density focused by 12 orders of magnitude to generate a clock-like string of picosecond flashes of ultraviolet light. Our earlier work on solitons [2] demonstrated how uniform surface waves break up into stable localized structures. Our experimental work on turbulence produced photos of localized structures lying many standard deviations outside the range of gaussian statistics[3]. This effect is referred to as intermittency. Our recent work on friction finds its motivation in those theories of sonoluminescence which invoke frictional electricity. In its most common form this is the generation of a spark when we touch a doorknob after walking over a carpet. Our reading of the literature on this subject indicated that frictional electricity like sonoluminescence is not understood. So to probe triboelectrification we set up a modern version of an experiment performed by Bernoulli in 1700. Here sparking is caused by the rubbing of glass against mercury. We indeed observed flashes of light which were accompanied by events of stick-slip friction at the interface between the mercury and glass. Furthermore, we found that a very slow relative motion of 1mm/second created repetitive macroscopic picosecond discharges wherein electrons are accelerated to at least 1% of the speed of light[4]. Following up on the Bernoulli-Picard effect we wondered if electrification played a role in ordinary friction and if friction itself might be another example of an energy focusing effect. Indeed we found that dry friction is due to the spontaneous formation of atomic/molecular bonds at the interface of two materials brought into contact. Bond formation provides for the stick in stick-slip friction. When the external force is great enough to rupture the bonds the interface slips. Thus the averaged normal force applied to an interface is focused down to the level of individual bonds where quantum mechanics comes into play in determining the properties of friction in macroscopic systems[5,6,7]. A typical applied stress is about 1bar whereas the focused stress at the bonds which spontaneously form at the interface is about 1Megabar. This stress is so great that it locally distorts the interface and leads to spot cold welding between surfaces in contact. And as these cold welds grow the change in stiffness of the junction displays quantum jumps which we have observed even when the bodies in contact have macroscopic dimensions [7]. The intellectual thrust for all the advances mentioned above has been seeded by the Division of Materials Sciences and Engineering. We believe that our efforts have generated favorable science based publicity for Basic Energy Science. The Principal Investigator has been invited to give colloquia at each of the top 20 universities at least once. The New York Times has written 3 science articles based on our effort on sonoluminescence and the mercury light. Nature has written a news-story about our work on solitons [8] and more recently a news-story about our work on cold welding [9]. Our recent success in scaling up sonoluminescence to pulses with a peak power of 1/2Watt [10] has just been reported by Physics Today[11], and a presentation to the Acoustical Society of America [12] about megakelvin sonoluminescing bubbles has been picked up by Business Week [13]. Additional news articles about our work in Nature, Science, etc. could be cited.},
doi = {10.2172/875337},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2006},
month = {1}
}