skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

Abstract

The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facilitymore » System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES).« less

Authors:
;
Publication Date:
Research Org.:
Office of Scientific and Technical Information, Oak Ridge, TN
Sponsoring Org.:
USDOE
OSTI Identifier:
861908
Report Number(s):
ANL-SET-ME-000002 REV 00
MOL.20000124.0315 DC#23946; TRN: US0600659
DOE Contract Number:
NA
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; AVAILABILITY; CONTROL SYSTEMS; DESIGN; DISTRIBUTION; MONITORING; MONITORS; PERFORMANCE; POSITIONING; STRATA CONTROL; TRANSPORTATION SYSTEMS; WASTE RETRIEVAL; WASTES

Citation Formats

T. Wilson, and R. Novotny. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM. United States: N. p., 1999. Web. doi:10.2172/861908.
T. Wilson, & R. Novotny. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM. United States. doi:10.2172/861908.
T. Wilson, and R. Novotny. Mon . "SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM". United States. doi:10.2172/861908. https://www.osti.gov/servlets/purl/861908.
@article{osti_861908,
title = {SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM},
author = {T. Wilson and R. Novotny},
abstractNote = {The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES).},
doi = {10.2172/861908},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Nov 22 00:00:00 EST 1999},
month = {Mon Nov 22 00:00:00 EST 1999}
}

Technical Report:

Save / Share:
  • The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface emplacement transportation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333PY ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
  • The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface development transportation structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
  • The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km/sup 2/, is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt antilcines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has anmore » estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as ''marker beds.'' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement.« less
  • This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, ormore » excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.« less
  • Current plans propose placing subsurface markers within protective barriers to deter potential human intrusion into disposed radioactive wastes. The subsurface markers would provide warning to the digging intruder should surface markers be removed, destroyed, or ignored. This plan sets forth procedures for testing the survivability of the subsurface markers during construction of the barrier. After the tests described herein are concluded, a decision can be made as to whether subsurface markers will require protection during barrier construction. If protection is required, additional tests will be needed to test the effectiveness of various protective approaches.