skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

Abstract

Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approachmore » is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).« less

Authors:
Publication Date:
Research Org.:
University of Idaho, Moscow, ID
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
850392
Report Number(s):
EMSP-87016-2004
R&D Project: EMSP 87016; TRN: US0504192
DOE Contract Number:  
FG07-02ER63486
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES; ACCELERATION; ACID NEUTRALIZING CAPACITY; ADSORPTION; AQUIFERS; CALCITE; CALCIUM CARBONATES; CONTAINMENT; HYDROLYSIS; MICROORGANISMS; PRECIPITATION; RADIOISOTOPES; STABILIZATION; STRONTIUM 90; UREA; UREASE

Citation Formats

Smith, Robert W. Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE. United States: N. p., 2004. Web. doi:10.2172/850392.
Smith, Robert W. Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE. United States. https://doi.org/10.2172/850392
Smith, Robert W. Wed . "Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE". United States. https://doi.org/10.2172/850392. https://www.osti.gov/servlets/purl/850392.
@article{osti_850392,
title = {Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE},
author = {Smith, Robert W},
abstractNote = {Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).},
doi = {10.2172/850392},
url = {https://www.osti.gov/biblio/850392}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2004},
month = {12}
}