skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTIION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED SODUIM BEARING WASTE (HLW AND/OR LLW)

Technical Report ·
DOI:https://doi.org/10.2172/839097· OSTI ID:839097

Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not new, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made precursors. The process under study is derived from a well known method in which metakaolin (thermally dehydroxylated kaolin a mixture of kaolinite and smaller amounts of quartz and mica that has been heated to {approx}700 C) is mixed with sodium hydroxide (NaOH) and water and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick paste and then the paste is cured under mild hydrothermal conditions (60-200 C), the mixture forms a concrete-like ceramic material made up of distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its vitreous character we have chosen to call this composite a ''hydroceramic''. Similar to zeolite powders, a hydroceramic is able to sequester cations in both lattice positions and within the channels and voids present in its tectosilicate framework structure. It can also accommodate a wide range of salt molecules (e.g., sodium nitrate) within these same openings thus rendering them insoluble. Due to its fine crystallite size and cementing character, the matrix develops significant physical strength. The obvious similarities between a hydroceramic waste form and a waste form based on solidified Portland cement grout are only superficial because their chemistries are entirely different. In addition to being vastly superior to conventional Portland cement grouts with respect to salt retention, standard radwaste leach protocols (PCT, TCLP, etc.) have shown that hydroceramics also do a better job of immobilizing the RCRA-toxic and radioactive components of ''sodium bearing wastes'' (SBWs).

Research Organization:
Pennsylvania State University, University Park, PA (US)
Sponsoring Organization:
USDOE Office of Science (SC) (US)
DOE Contract Number:
FG07-98ER45728
OSTI ID:
839097
Report Number(s):
EMSP-81963-204; R&D Project: EMSP 81963; TRN: US0501608
Resource Relation:
Other Information: PBD: 10 Jun 2004
Country of Publication:
United States
Language:
English