skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: UZ Flow Models and Submodels

Abstract

The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describemore » fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.« less

Authors:
Publication Date:
Research Org.:
Yucca Mountain Project, Las Vegas, Nevada (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
838643
Report Number(s):
MDL-NBS-HS-000006, REV 02
DOC.20041101.0004, DC43227; TRN: US0502871
DOE Contract Number:  
AC28-01RW12101
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Nov 2004
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; CALCITE; CALIBRATION; DESIGN; FLOW MODELS; GAS FLOW; GEOCHEMISTRY; LIQUID FLOW; MOISTURE; PNEUMATICS; SIMULATION; SPATIAL DISTRIBUTION; STRONTIUM; TRANSPORT; VALIDATION; YUCCA MOUNTAIN

Citation Formats

Y. Wu. UZ Flow Models and Submodels. United States: N. p., 2004. Web. doi:10.2172/838643.
Y. Wu. UZ Flow Models and Submodels. United States. doi:10.2172/838643.
Y. Wu. Mon . "UZ Flow Models and Submodels". United States. doi:10.2172/838643. https://www.osti.gov/servlets/purl/838643.
@article{osti_838643,
title = {UZ Flow Models and Submodels},
author = {Y. Wu},
abstractNote = {The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.},
doi = {10.2172/838643},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2004},
month = {11}
}