skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High strength and heat resistant chromium steels for sodium-cooled fast reactors.

Technical Report ·
DOI:https://doi.org/10.2172/836536· OSTI ID:836536

This report provides the results of a preliminary phase of a project supporting the Advanced Nuclear Fuel Cycle Technology Initiative at ANL. The project targets the Generation IV nuclear energy systems, particularly the area of reducing the cost of sodium-cooled fast-reactors by utilizing innovative materials. The main goal of the project is to provide the nuclear heat exchanger designers a simplified means to quantify the cost advantages of the recently developed high strength and heat resistant ferritic steels with 9 to 13% chromium content. The emphasis in the preliminary phase is on two steels that show distinctive advantages and have been proposed as candidate materials for heat exchangers and also for reactor vessels and near-core components of Gen IV reactors. These steels are the 12Cr-2W (HCM12A) and 9Cr-1MoVNb (modified 9Cr-1Mo). When these steels are in tube form, they are referred to in ASTM Standards as T122 and T91, respectively. A simple thermal-hydraulics analytical model of a counter-flow, shell-and-tube, once-through type superheated steam generator is developed to determine the required tube length and tube wall temperature profile. The single-tube model calculations are then extended to cover the following design criteria: (i) ratio of the tube stress due to water/steam pressure to the ASME B&PV Code allowable stress, (ii) ratio of the strain due to through-tube-wall temperature differences to the material fatigue limit, (iii) overall differential thermal expansion between the tube and shell, and (iv) total amount of tube material required for the specified heat exchanger thermal power. Calculations were done for a 292 MW steam generator design with 2200 tubes and a steam exit condition of 457 C and 16 MPa. The calculations were performed with the tubes made of the two advanced ferritic steels, 12Cr-2W and 9Cr-1MoVNb, and of the most commonly used steel, 2 1/4Cr-1Mo. Compared to the 2 1/4Cr-1Mo results, the 12Cr-2W tubes required 29% less material and the 9Cr-1MoVNb tubes required 25% less material. Also, with the advanced steels, the thermal strains in the tubes and differential thermal expansion between tubes and shell were significantly better. For steam generators with higher steam exit temperatures, the benefits of the advanced steels become much larger. A thorough search for the thermal and mechanical properties of the two advanced steels was conducted. A summary of the search results is provided. It shows what is presently known about these two advanced steels and what still needs to be determined so that they can be used in nuclear heat exchanger designs. Possible follow up steps are outlined.

Research Organization:
Argonne National Lab., Argonne, IL (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-31-109-ENG-38
OSTI ID:
836536
Report Number(s):
ANL-04/27; TRN: US0500621
Resource Relation:
Other Information: PBD: 22 Dec 2004
Country of Publication:
United States
Language:
English