skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hot-Gas Filter Testing with a Transport Reactor Gasifier

Abstract

Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept providesmore » excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.« less

Authors:
;
Publication Date:
Research Org.:
University of North Dakota Energy & Environmental Research Center 15 North 23rd Street Box 9018 Grand Forks, ND (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
835767
DOE Contract Number:
FC26-98FT40514
Resource Type:
Conference
Resource Relation:
Conference: 5th International Symposium on Gas Cleaning at High Temperatures, Morgantown, WV (US), 09/17/2002--09/20/2002; Other Information: PBD: 18 Sep 2002
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; CAPITALIZED COST; CLEANING; COAL; COMBINED CYCLES; ELECTRIC POWER; ELECTRICITY; GAS TURBINES; GASIFICATION; PARTICULATES; PNEUMATIC TRANSPORT; POLLUTANTS; POWER GENERATION; STEAM; STEAM TURBINES; SULFUR; TESTING; INTEGRATED GASIFICATION COMBINED CYCLE; PARTICULATE CONTROL; CANDLE FILTER TESTING; TRACE ELEMENT MEASUREMENT

Citation Formats

Swanson, M.L., and Hajicek, D.R.. Hot-Gas Filter Testing with a Transport Reactor Gasifier. United States: N. p., 2002. Web.
Swanson, M.L., & Hajicek, D.R.. Hot-Gas Filter Testing with a Transport Reactor Gasifier. United States.
Swanson, M.L., and Hajicek, D.R.. 2002. "Hot-Gas Filter Testing with a Transport Reactor Gasifier". United States. doi:. https://www.osti.gov/servlets/purl/835767.
@article{osti_835767,
title = {Hot-Gas Filter Testing with a Transport Reactor Gasifier},
author = {Swanson, M.L. and Hajicek, D.R.},
abstractNote = {Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2002,
month = 9
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The objectives of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Energy & Environmental Research Center (EERC) is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot-gas filter element performance (particulate collection efficiency, filter pressure differential, filter cleanability, and durability) as a function of temperature and filter face velocity during short-term operation (100-200 hours). This filter vessel will be utilized in combination with the TRDU to evaluate themore » performance of selected hot-gas filter elements under gasification operating conditions. This work will directly support the power systems development facility (PSDF) utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and, indirectly, the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville.« less
  • The objective of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Environmental Research Center is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot- gas filter elements as a function of particulate collection efficiency, filter pressure differential, filter cleanability, and durability during relatively short-term operation (100-200 hours). A filter vessel will be used in combination with the TRDU to evaluate the performance of selected hot- gas filter elementsmore » under gasification operating conditions. This work will directly support the Power Systems Development Facility utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and indirectly the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville and the Clean Coal IV Pinon Pine IGCC Power Project. This program has a phased approach involving modification and upgrades to the TRDU and the fabrication, assembly, and operation of a hot-gas filter vessel (HGFV) capable of operating at the outlet design conditions of the TRDU. Phase 1 upgraded the TRDU based upon past operating experiences. Additions included a nitrogen supply system upgrade, upgraded LASH auger and 1807 coal feed lines, the addition of a second pressurized coal feed hopper and a dipleg ash hopper, and modifications to spoil the performance of the primary cyclone. Phase 2 included the HGFV design, procurement, and installation. Phases 3 through 5 consist of 200-hour hot-gas filter tests under gasification conditions using the TRDU at temperatures of 540-650{degrees}C (1000-1200{degrees}F), 9.3 bar, and face velocities of 1.4, 2. and 3.8 cm/s, respectively. The increased face velocities are achieved by removing candles between each test.« less
  • The objective of the hot-gas cleanup work on the transport reactor development unit (TRDU) located at the Energy and Environmental Research Center is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot-gas filter elements as a function of particulate collection efficiency, filter pressure differential, filter cleanability, and durability during relatively short-term operation (100--200 hours). The selected hot-gas filter elements currently being tested include a Fibroplate{trademark} ceramic tube sheet and Fibrosic{trademark} candle filters from industrial Filtermore » and Pump Mfg.; silicon carbide fiber ceramic candle filters from 3M; and metal and Vitropore ceramic candle filters from Pall Advanced Separation Systems. These elements will be used in three 200-hour filter tests under gasification conditions using the TRDU at filter temperatures of approximately 540 C at 9.3 bar and face velocities ranging from 1.4 to 3.8 cm/s. Changes in filter face velocity are achieved by removing six candles between each test. Results from the first 200-hour test are presented.« less
  • Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away frommore » reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)« less
  • The importance of testing HEPA filter exhaust plenums with consideration for As Low as Reasonably Achievable (ALARA) will require that new technology be applied to existing plenum designs. HEPA filter testing at Rocky Flats has evolved slowly due to a number of reasons. The first plenums were built in the 1950`s, preceding many standards. The plenums were large, which caused air dispersal problems. The systems were variable air flow. Access to the filters was difficult. The test methods became extremely conservative. Changes in methods were difficult to make. The acceptance of new test methods has been made in recent yearsmore » with the change in plant mission and the emphasis on worker safety.« less