skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT

Abstract

The United States Department of Energy Office of Environmental Management (DOE-EM) faces a number of sizeable challenges as it begins to transform its mission from managing risk to reducing and eliminating risk throughout the DOE Complex. One of the greatest challenges being addressed by DOE-EM as this transformation takes place is accelerating the deactivation and decommissioning of thousands of facilities within the DOE Complex that were once used to support nuclear-related programs and projects. These facilities are now unused and aging. Finding solutions to complete the cleanup of these aging facilities more safely, efficiently, and effectively while reducing costs is critical to successfully meeting DOE-EM's cleanup challenge. The Large-Scale Demonstration and Deployment Project (LSDDP) of Hot Cells at the West Valley Demonstration Project (WVDP) is a near-term project funded through the DOE's National Energy Technology Laboratory (DOE-NETL) for the specific purpose of identifying, evaluating, demonstrating, and deploying commercially available technologies that are capable of streamlining the cleanup of hot cells in unused facilities while improving worker safety. Two DOE project sites are participating in this LSDDP: the WVDP site in West Valley, New York and the Hanford River Corridor Project (RCP) site in Richland, Washington. The WVDP site serves asmore » the host site for the project. Technologies considered for demonstration and potential deployment at both LSDDP sites are targeted for application in hot cells that require the use of remote and semi-remote techniques to conduct various cleanup-related activities because of high radiation or high contamination levels. These hot cells, the type of cleanup activities being conducted, and technologies selected for demonstration are the main topics discussed in this paper. The range of cleanup-related activities addressed include in-situ characterization, size-reduction, contamination control, decontamination, in-c ell viewing, and various types of handling, retrieval, and dismantlement tasks. The primary focus of the LSDDP of Hot Cells is on demonstrating technologies capable of reducing cost and schedule baselines for work scopes involving in-situ characterization (including nondestructive examination to access in-cell areas), size-reducing equipment and piping, contamination control, and decontaminating surfaces (including equipment surfaces). Demonstrations of technologies that can streamline these tasks are scheduled for the WVDP site. Demonstrations scheduled for the Hanford RCP site focus on work scope activities involving remote-inspection and viewing. Each demonstration conducted will be assessed using evaluation criteria established by the participating sites to determine if selected technologies represent a significant improvement over current baseline technologies being used to perform work. If proven to be effective, each of the commercially available technologies demonstrated has th e potential to be quickly deployed at other sites, resulting in improved worker safety, reduced cleanup costs, and accelerated schedule completion for many of the most challenging cleanup efforts now underway throughout the DOE Complex.« less

Authors:
; ;
Publication Date:
Research Org.:
U.S. Department of Energy; West Valley Nuclear Services Company (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
827285
Resource Type:
Conference
Resource Relation:
Conference: Waste Management 2003 Symposium, Tucson, AZ (US), 02/23/2003--02/27/2003; Other Information: PBD: 27 Feb 2003
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; AGING; CONTAMINATION; DEACTIVATION; DECOMMISSIONING; DECONTAMINATION; EVALUATION; HOT CELLS; MANAGEMENT; RADIATIONS; RIVERS; SAFETY; SCHEDULES; TRANSFORMATIONS; WASTE MANAGEMENT

Citation Formats

Drake, John L., Gramling, James M., and Houston, Helene M. FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT. United States: N. p., 2003. Web.
Drake, John L., Gramling, James M., & Houston, Helene M. FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT. United States.
Drake, John L., Gramling, James M., and Houston, Helene M. Thu . "FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT". United States. doi:. https://www.osti.gov/servlets/purl/827285.
@article{osti_827285,
title = {FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT},
author = {Drake, John L. and Gramling, James M. and Houston, Helene M.},
abstractNote = {The United States Department of Energy Office of Environmental Management (DOE-EM) faces a number of sizeable challenges as it begins to transform its mission from managing risk to reducing and eliminating risk throughout the DOE Complex. One of the greatest challenges being addressed by DOE-EM as this transformation takes place is accelerating the deactivation and decommissioning of thousands of facilities within the DOE Complex that were once used to support nuclear-related programs and projects. These facilities are now unused and aging. Finding solutions to complete the cleanup of these aging facilities more safely, efficiently, and effectively while reducing costs is critical to successfully meeting DOE-EM's cleanup challenge. The Large-Scale Demonstration and Deployment Project (LSDDP) of Hot Cells at the West Valley Demonstration Project (WVDP) is a near-term project funded through the DOE's National Energy Technology Laboratory (DOE-NETL) for the specific purpose of identifying, evaluating, demonstrating, and deploying commercially available technologies that are capable of streamlining the cleanup of hot cells in unused facilities while improving worker safety. Two DOE project sites are participating in this LSDDP: the WVDP site in West Valley, New York and the Hanford River Corridor Project (RCP) site in Richland, Washington. The WVDP site serves as the host site for the project. Technologies considered for demonstration and potential deployment at both LSDDP sites are targeted for application in hot cells that require the use of remote and semi-remote techniques to conduct various cleanup-related activities because of high radiation or high contamination levels. These hot cells, the type of cleanup activities being conducted, and technologies selected for demonstration are the main topics discussed in this paper. The range of cleanup-related activities addressed include in-situ characterization, size-reduction, contamination control, decontamination, in-c ell viewing, and various types of handling, retrieval, and dismantlement tasks. The primary focus of the LSDDP of Hot Cells is on demonstrating technologies capable of reducing cost and schedule baselines for work scopes involving in-situ characterization (including nondestructive examination to access in-cell areas), size-reducing equipment and piping, contamination control, and decontaminating surfaces (including equipment surfaces). Demonstrations of technologies that can streamline these tasks are scheduled for the WVDP site. Demonstrations scheduled for the Hanford RCP site focus on work scope activities involving remote-inspection and viewing. Each demonstration conducted will be assessed using evaluation criteria established by the participating sites to determine if selected technologies represent a significant improvement over current baseline technologies being used to perform work. If proven to be effective, each of the commercially available technologies demonstrated has th e potential to be quickly deployed at other sites, resulting in improved worker safety, reduced cleanup costs, and accelerated schedule completion for many of the most challenging cleanup efforts now underway throughout the DOE Complex.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 27 00:00:00 EST 2003},
month = {Thu Feb 27 00:00:00 EST 2003}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: