skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

Abstract

The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remainingmore » in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume tracking methodology helped the USACE Buffalo District track soil quantity changes from projected excavation work over time and across space, providing the basis for an explanation of some of the project cost and schedule variances.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab., IL (US); U.S. Army Corps of Engineers Buffalo District, 1766 Niagara Street, Buffalo, NY 14207 (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
825972
Resource Type:
Conference
Resource Relation:
Conference: Waste Management 2003 Symposium, Tucson, AZ (US), 02/23/2003--02/27/2003; Other Information: PBD: 27 Feb 2003
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 54 ENVIRONMENTAL SCIENCES; ENGINEERS; EXCAVATION; RECOMMENDATIONS; REMEDIAL ACTION; SCHEDULES; SOILS; US CORPS OF ENGINEERS; WASTE MANAGEMENT

Citation Formats

Durham, L.A., Johnson, R.L., Rieman, C., Kenna, T., and Pilon, R. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY. United States: N. p., 2003. Web.
Durham, L.A., Johnson, R.L., Rieman, C., Kenna, T., & Pilon, R. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY. United States.
Durham, L.A., Johnson, R.L., Rieman, C., Kenna, T., and Pilon, R. Thu . "CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY". United States. https://www.osti.gov/servlets/purl/825972.
@article{osti_825972,
title = {CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY},
author = {Durham, L.A. and Johnson, R.L. and Rieman, C. and Kenna, T. and Pilon, R.},
abstractNote = {The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume tracking methodology helped the USACE Buffalo District track soil quantity changes from projected excavation work over time and across space, providing the basis for an explanation of some of the project cost and schedule variances.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2003},
month = {2}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: